

Arduino IDE→ PlatformIO + IDE

Arduino, what is it

● It is the name for the hardware (atmel based..)
● It is the name for the IDE
● It is the name for the FrameWork (libs+code)
● It’s a set of tools to make it easy for a novice to

start making a chip do useful things

What does it do (hardware)

● It handles all the interfacing with your microcontroller,
as easily as possible

● Hardware comes with a bootloader (no special
programmer required)

● Hardware is ‘abstracted’; pin mappings/functions along
edge of board

● It provides compatibility(ish)

What does it do (IDE)

● It knows the types of boards out there and how to
upload software to them

● It provides a way to manage compatible libraries
● It makes it easy to start experimenting (example

sketches)
● It abstracts a number of programming concepts away

from the user; turns ‘Arduino code’ into C

What does it do (framework)

● It provides ‘higher level’ functions, abstracting away the
‘nitty gritty’ of an architecture

● It is essentially a ton of C-files defining
● Pin-definitions, useful functions (pinMode, DigitalWrite,

analogRead, etc)
● It provides a way for code to work over multiple

‘Architectures’ (started with Atmel, but others available)

What does it do , badly

● It is very bad at handling larger projects (IDE)
● IDE is clunky and slow (JAVA)
● Hard to work with other architectures

(esp8266/esp32)
● It has bad library handling (dependencies are

global)

Introducing Platform IO (in IDE)

● Lives on PlatformIO.org
● Open source
● “Professional collaborative platform for embedded development”
● “PlatformIO is written in pure Python and doesn't depend on any

additional libraries/tools from an operation system. It allows you
to use PlatformIO beginning from PC and ending with credit-card
sized computers (like Raspberry Pi, BeagleBone, CubieBoard)

PlatformIO, what does it do

● Separates ‘platform’ , ‘architecture’, ‘board’ and
‘Programming Environment’ from eachother

● Platform: arduino, esp-idf, RTOS, etc
● Architecture: atmel, stm32, espressif8266/esp32
● Board: a board may be useable for multiple platforms
● Programming-Environment: IDE, or not to IDE (or basis of

larger project: esphome.io, etc)

PlatformIO, the ‘core’

● The basis is a python tool ‘platformio’
● Can be used stand-alone (shell/makefile)
● Manages ‘projects’
● Communicates with the ‘registry’ for searching, installing and updates.
● Contains ‘platforms’,’frameworks’,’boards’ and ‘libraries’
● Can communicate with platformio for other tasks (remote ota)
● Has a smart way of handling dependencies (libraries)

PlatformIO, Project

● /src - Your stuff
● /include - To be included (.h)
● /lib - (private) libraries
● /test - unit tests (magic for pro’s)
● platformio.ini - config-file for awesome

Platformio, platforms

● Compiler for the chosen architecture
● Support-tools for uploading/debugging
● ‘atmelavr’, ‘atmelmegaavr’
● ‘espressif8266’
● ‘esp32’

PlatformIO, Frameworks

● ‘Arduino’ is a framework available over multiple
‘platforms’

● Allows for easy portability to other chips (and
thus: boards)

● Others available

PlatformIO, boards

● A ‘board’ provides info about:
● What platform (cpu → compiler)
● What upload/debug tools (serial-usb , wifi/ota)
● What abstraction a framework should use , if

any (pins)

Platformio, Libraries

● Pulled from the ‘registry’ or installed locally in project
/lib

● ‘Library Dependency Finder’ → handles finding the
right library, guided by hints in platformio.ini

● Come with example-code
● Pulled directly from upstream github repo (not

mirrored)

Platformio.io – Less talk, more doing

● Install/Demo-time
● VsCode install
● Platformio install
● (intermezzo about Codium)

Platformio – Install VSCode/Codium

● Vscode: code.visualstudio.com
● Codium = VsCode with no/less telemetry
● Codium: vscodium.com
● Caveat: visualstudio marketplace is advised/required
● https://github.com/VSCodium/vscodium/blob/

master/DOCS.md

Platformio, install extension

● https://platformio.org/install/ide?install=vscode
● 1 Open Vscode Extension manager
● 2 Search for Official Platform IDE extension
● 3 Install PlatformIO IDE
● …. set some settings...
● 4 Profit (and/or ‘read quickstart guide’)

Platformio , config. vscode

● PlatformIO basedir = ~/Documents/PlatformIO
● Projects: ~/Documents/PlatformIO/Projects
● You know better ? :
● Sidebar ‘PlatformIO’ logo → New Terminal
● ‘pio settings set projects_dir /new/path/projects/dir’

PlatformIO, setting up for Arduino

● Find ‘home screen’ (bottom-left if not open by default)
● Start new project
● Choose a name
● Choose a board : ‘arduino uno’
● MAGIC HAPPENS HERE
● Installed: atmelavr platform, arduino framework
● Created: project-dir + ‘platformio.ini’ file

PlatformIO, your first blink.ino

● src/main.cpp

#include <Arduino.h>

void setup() {

// initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

PlatformIO, blink.ino, continued

● ‘platformio.ini’

[env:uno]

platform = atmelavr

board = uno

framework = arduino

upload_port = /dev/ttyUSB0

upload_speed = 115200

monitor_port = /dev/ttyUSB0

monitor_speed = 9600

PlatformIO, blink, Profit

● Bottom left:
● House: Home-page
● Checkmark: Build Code (CTRL-ALT-B)
● Arrow: Upload to board (CTRL-ALT-U)
● Garbage-bin: Clean project
● Plug: Serial Monitor (CTRL-ALT-S)
● Screen: open terminal

PlatformIO, blink.ino, aftermath

● YAY WE DID IT
● WORKSHOP OVER
● DONE!
● GRATUATED
● OMG SO SMARTS
● Hold your horses, young padawan.

PlatformIO, arduino framework info

● #include <Arduino.h> at top
● Define your functions before using them!

(demo)
● … that’s it, afaik

Platformio, Libraries

● Refer to library with name or (registry) ID
● lib_deps =

knolleary/PubSubClient

bblanchon/ArduinoJson @ ~5,!=5.4

https://github.com/gioblu/PJON.git#v2.0

https://github.com/me-no-dev/ESPAsyncTCP.git

https://github.com/adafruit/DHT-sensor-library/archive/master.zip

PlatformIO, Libraries cont.

● Library-dependencies travel with project
● Automatically pulled when building
● Checked for updates after install
● Can be finetuned further: lib_extra_dirs, lib_ignore,

lib_ldf_mode, lib_compat_mode
● Check library registry online or in PlatformIO IDE

PlatformIO, extra things to note

● platform.ini file [env] (global)
● Build: pio run
● Upload: pio run -t upload
● [env:myEnv] : pio run -e myEnv
● Debug: define ‘debug=True’ in one env
● pio run debug

PlatformIO, advanced stuff

● Esphome.io showcase
● Home-automation devices ‘created’ in yaml-syntax
● Generates Arduino-code + platform.ini
● Uses platformio for all the heavy lifting
● DEMOTIME

PlatformIO, further reading

● Platformio ‘home’
● Docs.platformio.org, tutorials, examples
● Platformio.org/lib
● Library ‘examples’ tab

PlatformIO, conclusion

● Fixes shortcomings of Arduino IDE
● Allows greater platform/framework freedom
● Helps structurize projects
● Automates installation and maintenance of

toolchains and libraries
● Integrates well with popular IDE’s (or not)

PlatformIO, the end

● Questions, comments, tomatoes
●

● A.P. “Justa” Marijnissen
● contact@sociallife.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

