
 

Arduino IDE→ PlatformIO + IDE



  

Arduino, what is it

● It is the name for the hardware (atmel based..)
● It is the name for the IDE
● It is the name for the FrameWork (libs+code)
● It’s a set of tools to make it easy for a novice to 

start making a chip do useful things



  

What does it do (hardware)

● It handles all the interfacing with your microcontroller, 
as easily as possible

● Hardware comes with a bootloader (no special 
programmer required)

● Hardware is ‘abstracted’; pin mappings/functions along 
edge of board

● It provides compatibility(ish)



  

What does it do (IDE)

● It knows the types of boards out there and how to 
upload software to them

● It provides a way to manage compatible libraries
● It makes it easy to start experimenting (example 

sketches)
● It abstracts a number of programming concepts away 

from the user; turns ‘Arduino code’ into C



  

What does it do (framework)

● It provides ‘higher level’ functions, abstracting away the 
‘nitty gritty’ of an architecture

● It is essentially a ton of C-files defining
● Pin-definitions, useful functions (pinMode, DigitalWrite, 

analogRead, etc)
● It provides a way for code to work over multiple 

‘Architectures’ ( started with Atmel, but others available)



  

What does it do , badly

● It is very bad at handling larger projects (IDE)
● IDE is clunky and slow (JAVA)
● Hard to work with other architectures 

(esp8266/esp32)
● It has bad library handling (dependencies are 

global)



  

Introducing Platform IO (in IDE)

● Lives on PlatformIO.org
● Open source
● “Professional collaborative platform for embedded development”
● “PlatformIO is written in pure Python and doesn't depend on any 

additional libraries/tools from an operation system. It allows you 
to use PlatformIO beginning from PC and ending with credit-card 
sized computers (like Raspberry Pi, BeagleBone, CubieBoard)



  

PlatformIO, what does it do

● Separates ‘platform’ , ‘architecture’, ‘board’ and 
‘Programming Environment’ from eachother

● Platform: arduino, esp-idf, RTOS, etc
● Architecture: atmel, stm32, espressif8266/esp32
● Board: a board may be useable for multiple platforms
● Programming-Environment: IDE, or not to IDE (or basis of 

larger project: esphome.io, etc)



  

PlatformIO, the ‘core’

● The basis is a python tool ‘platformio’
● Can be used stand-alone (shell/makefile)
● Manages ‘projects’
● Communicates with the ‘registry’ for searching, installing and updates.
● Contains ‘platforms’,’frameworks’,’boards’ and ‘libraries’
● Can communicate with platformio for other tasks (remote ota)
● Has a smart way of handling dependencies (libraries)



  

PlatformIO, Project

● /src - Your stuff
● /include - To be included (.h)
● /lib - (private) libraries
● /test - unit tests (magic for pro’s)
● platformio.ini - config-file for awesome



  

Platformio, platforms 

● Compiler for the chosen architecture
● Support-tools for uploading/debugging
● ‘atmelavr’, ‘atmelmegaavr’
● ‘espressif8266’
● ‘esp32’



  

PlatformIO, Frameworks

● ‘Arduino’ is a framework available over multiple 
‘platforms’

● Allows for easy portability to other chips (and 
thus: boards)

● Others available



  

PlatformIO, boards

● A ‘board’ provides info about:
● What platform (cpu → compiler)
● What upload/debug tools (serial-usb , wifi/ota)
● What abstraction a framework should use , if 

any (pins)



  

Platformio, Libraries

● Pulled from the ‘registry’ or installed locally in project 
/lib

● ‘Library Dependency Finder’ → handles finding the 
right library, guided by hints in platformio.ini

● Come with example-code
● Pulled directly from upstream github repo (not 

mirrored)



  

Platformio.io – Less talk, more doing

● Install/Demo-time
● VsCode install
● Platformio install
● (intermezzo about Codium)



  

Platformio – Install VSCode/Codium

● Vscode: code.visualstudio.com
● Codium = VsCode with no/less telemetry
● Codium: vscodium.com
● Caveat: visualstudio marketplace is advised/required 
● https://github.com/VSCodium/vscodium/blob/

master/DOCS.md



  

Platformio, install extension

● https://platformio.org/install/ide?install=vscode
● 1 Open Vscode Extension manager
● 2 Search for Official Platform IDE extension
● 3 Install PlatformIO IDE
● …. set some settings...
● 4 Profit (and/or ‘read quickstart guide’)



  

Platformio , config. vscode

● PlatformIO basedir = ~/Documents/PlatformIO
● Projects: ~/Documents/PlatformIO/Projects
● You know better ? :
● Sidebar ‘PlatformIO’ logo → New Terminal
● ‘pio settings set projects_dir /new/path/projects/dir’



  

PlatformIO, setting up for Arduino

● Find ‘home screen’ (bottom-left if not open by default)
● Start new project
● Choose a name
● Choose a board : ‘arduino uno’
● MAGIC HAPPENS HERE
● Installed: atmelavr platform, arduino framework
● Created: project-dir + ‘platformio.ini’ file 



  

PlatformIO, your first blink.ino

● src/main.cpp

#include <Arduino.h>

void setup() {

// initialize digital pin LED_BUILTIN as an output.

  pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

  digitalWrite(LED_BUILTIN, HIGH);   // turn the LED on (HIGH is the voltage level)

  delay(1000);                       // wait for a second

  digitalWrite(LED_BUILTIN, LOW);    // turn the LED off by making the voltage LOW

  delay(1000);                       // wait for a second

}



  

PlatformIO, blink.ino, continued

● ‘platformio.ini’

[env:uno]

platform = atmelavr

board = uno

framework = arduino

upload_port = /dev/ttyUSB0

upload_speed = 115200

monitor_port = /dev/ttyUSB0

monitor_speed = 9600



  

PlatformIO, blink, Profit

● Bottom left:
● House: Home-page
● Checkmark: Build Code ( CTRL-ALT-B)
● Arrow: Upload to board  ( CTRL-ALT-U)
● Garbage-bin: Clean project
● Plug: Serial Monitor  ( CTRL-ALT-S)
● Screen: open terminal



  

PlatformIO, blink.ino, aftermath

● YAY WE DID IT
● WORKSHOP OVER
● DONE!
● GRATUATED
● OMG SO SMARTS
● Hold your horses, young padawan.



  

PlatformIO, arduino framework info

● #include <Arduino.h> at top
● Define your functions before using them! 

(demo)
● … that’s it, afaik



  

Platformio, Libraries

● Refer to library with name or (registry) ID
● lib_deps =

knolleary/PubSubClient

bblanchon/ArduinoJson @ ~5,!=5.4

https://github.com/gioblu/PJON.git#v2.0

https://github.com/me-no-dev/ESPAsyncTCP.git

https://github.com/adafruit/DHT-sensor-library/archive/master.zip



  

PlatformIO, Libraries cont.

● Library-dependencies travel with project
● Automatically pulled when building
● Checked for updates after install
● Can be finetuned further: lib_extra_dirs, lib_ignore, 

lib_ldf_mode, lib_compat_mode
● Check library registry online or in PlatformIO IDE



  

PlatformIO, extra things to note

● platform.ini file [env] (global) 
● Build: pio run
● Upload: pio run -t upload
● [env:myEnv] : pio run -e myEnv 
● Debug: define ‘debug=True’ in one env
● pio run debug



  

PlatformIO, advanced stuff

● Esphome.io showcase
● Home-automation devices ‘created’ in yaml-syntax
● Generates Arduino-code + platform.ini
● Uses platformio for all the heavy lifting
● DEMOTIME



  

PlatformIO, further reading

● Platformio ‘home’
● Docs.platformio.org, tutorials, examples
● Platformio.org/lib
● Library ‘examples’ tab



  

PlatformIO, conclusion

● Fixes shortcomings of Arduino IDE
● Allows greater platform/framework freedom
● Helps structurize projects
● Automates installation and maintenance of 

toolchains and libraries
● Integrates well with popular IDE’s (or not)



  

PlatformIO, the end

● Questions, comments, tomatoes
●

● A.P. “Justa” Marijnissen
● contact@sociallife.org
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