

MX25U1635E/MX25U3235E DATASHEET

Contents

FEATURES	6
GENERAL DESCRIPTION	8
Table 1. Additional Feature Comparison	
PIN CONFIGURATIONS	10
PIN DESCRIPTION	10
BLOCK DIAGRAM	11
DATA PROTECTION	12
Table 2. Protected Area Sizes	13
Table 3. 4K-bit Secured OTP Definition	13
Memory Organization	14
Table 4-1. Memory Organization (16Mb)	14
Table 4-2. Memory Organization (32Mb)	15
DEVICE OPERATION	17
Figure 1. Serial Modes Supported	17
Quad Peripheral Interface (QPI) Read Mode	18
Figure 2. Enable QPI Sequence (Command 35H)	18
Quad Peripheral Interface (QPI) operation	18
Figure 3. High-Speed Read Sequence (QPI) (Command 0BH)	18
Figure 4. Reset QPI Mode (Command F5H)	19
Figure 5. Fast QPI Read Mode (FASTRDQ) (Command EBH)	19
COMMAND DESCRIPTION	20
Table 5. Command Set	20
(1) Write Enable (WREN)	22
(2) Write Disable (WRDI)	22
(3) Read Identification (RDID)	22
(4) Read Status Register (RDSR)	22
Program/ Erase flow with read array data	23
Program/ Erase flow without read array data (read REGPFAIL/REGEFAIL flag)	24
WRSR flow	25
(5) Write Status Register (WRSR)	27
Table 6. Protection Modes	27
(6) Read Data Bytes (READ)	28
(7) Read Data Bytes at Higher Speed (FAST_READ)	28
(8) 2 x I/O Read Mode (2READ)	28
(9) 4 x I/O Read Mode (4READ)	29
(10) Burst Read	30
(11) Performance Enhance Mode	31

(12) Performance Enhance Mode Reset (FFh)	31
(13) Sector Erase (SE)	31
(14) Block Erase (BE32K)	32
(15) Block Erase (BE)	32
(16) Chip Erase (CE)	32
(17) Page Program (PP)	33
(18) 4 x I/O Page Program (4PP)	33
(19) Deep Power-down (DP)	34
(20) Release from Deep Power-down (RDP), Read Electronic Signature (RES)	34
(21) Read Electronic Manufacturer ID & Device ID (REMS)	35
(22) QPI ID Read (QPIID)	35
Table 7. ID Definitions	35
(23) Enter Secured OTP (ENSO)	36
(24) Exit Secured OTP (EXSO)	36
(25) Read Security Register (RDSCUR)	36
Table 8. Security Register Definition	37
(26) Write Security Register (WRSCUR)	37
(27) Write Protection Selection (WPSEL)	38
BP and SRWD if WPSEL=0	38
The individual block lock mode is effective after setting WPSEL=1	39
WPSEL Flow	40
(28) Single Block Lock/Unlock Protection (SBLK/SBULK)	41
Block Lock Flow	41
Block Unlock Flow	42
(29) Read Block Lock Status (RDBLOCK)	43
(30) Gang Block Lock/Unlock (GBLK/GBULK)	43
(31) Program/Erase Suspend/Resume	43
(31-1) Erase Suspend	43
(31-2) Program Suspend	44
(32) Write-Resume	45
(33) No Operation (NOP)	45
(34) Software Reset (Reset-Enable (RSTEN) and Reset (RST))	45
(35) Reset Quad I/O (RSTQIO)	
(36) Read SFDP Mode (RDSFDP)	46
Read Serial Flash Discoverable Parameter (RDSFDP) Sequence	46
Table a-1. Signature and Parameter Identification Data Values for MX25U1635E	47
Table b-1. Parameter Table (0): JEDEC Flash Parameter Tables for MX25U1635E	48
Table c-1. Parameter Table (1): Macronix Flash Parameter Tables for MX25U1635E	
Table a-2. Signature and Parameter Identification Data Values for MX25U3235E	
Table b-2. Parameter Table (0): JEDEC Flash Parameter Tables for MX25U3235E	52

	Table c-2. Parameter Table (1): Macronix Flash Parameter Tables for MX25U3235E	54
PO	WER-ON STATE	56
EL	ECTRICAL SPECIFICATIONS	57
	ABSOLUTE MAXIMUM RATINGS	57
	Figure 6. Maximum Negative Overshoot Waveform	57
	CAPACITANCE TA = 25°C, f = 1.0 MHz.	57
	Figure 7. Maximum Positive Overshoot Waveform	57
	Figure 8. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL	58
	Figure 9. OUTPUT LOADING	58
	Table 9. DC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V)	59
	Table 10. AC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V)	60
Tin	ning Analysis	61
	Figure 10. Serial Input Timing	61
	Figure 11. Output Timing	61
	Figure 12. WP# Setup Timing and Hold Timing during WRSR when SRWD=1	62
	Figure 13-1. Write Enable (WREN) Sequence (Command 06) (SPI Mode)	62
	Figure 13-2. Write Enable (WREN) Sequence (Command 06) (QPI Mode)	62
	Figure 14-1. Write Disable (WRDI) Sequence (Command 04) (SPI Mode)	63
	Figure 14-2. Write Disable (WRDI) Sequence (Command 04) (QPI Mode)	63
	Figure 15. Read Identification (RDID) Sequence (Command 9F) (SPI mode only)	63
	Figure 16-1. Read Status Register (RDSR) Sequence (Command 05) (SPI Mode)	64
	Figure 16-2. Read Status Register (RDSR) Sequence (Command 05) (QPI Mode)	64
	Figure 17-1. Write Status Register (WRSR) Sequence (Command 01) (SPI Mode)	64
	Figure 17-2. Write Status Register (WRSR) Sequence (Command 01) (QPI Mode)	65
	Figure 18. Read Data Bytes (READ) Sequence (Command 03) (SPI Mode only) (33MHz)	65
	Figure 19-1. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (SPI Mode) (104MHz)	66
	Figure 19-2. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (QPI Mode) (84MHz)	66
	Figure 20. 2 x I/O Read Mode Sequence (Command BB) (SPI Mode only) (84MHz)	67
	Figure 21. 4 x I/O Read Mode Sequence (Command EB) (SPI Mode) (104MHz)	67
	Figure 22-1. 4 x I/O Read enhance performance Mode Sequence (Command EB) (SPI Mode) (104MHz)	68
	Figure 22-2. 4 x I/O Read enhance performance Mode Sequence (Command EB) (QPI Mode) (104MHz)	
	Figure 23-1. Page Program (PP) Sequence (Command 02) (SPI Mode)	
	Figure 23-2. Page Program (PP) Sequence (Command 02) (QPI Mode)	
	Figure 24. 4 x I/O Page Program (4PP) Sequence (Command 38) (SPI Mode only)	70
	Figure 25-1. Sector Erase (SE) Sequence (Command 20) (SPI Mode)	
	Figure 25-2. Sector Erase (SE) Sequence (Command 20) (QPI Mode)	
	Figure 26-1. Block Erase 32KB (BE32K) Sequence (Command 52) (SPI Mode)	
	Figure 26-2. Block Erase 32KB (BE32K) Sequence (Command 52) (QPI Mode)	
	Figure 27-1. Block Erase (BE) Sequence (Command D8) (SPI Mode)	
	Figure 27-2. Block Erase (BE) Sequence (Command D8) (QPI Mode)	72

Figure 28-1. Chip Erase (CE) Sequence (Command 60 or C7) (SPI Mode)	72
Figure 28-2. Chip Erase (CE) Sequence (Command 60 or C7) (QPI Mode)	72
Figure 29-1. Deep Power-down (DP) Sequence (Command B9) (SPI Mode)	73
Figure 29-2. Deep Power-down (DP) Sequence (Command B9) (QPI Mode)	73
Figure 30. Read Electronic Signature (RES) Sequence (Command AB) (SPI Mode Only)	73
Figure 31-1. Release from Deep Power-down (RDP) Sequence (Command AB) (SPI Mode)	74
Figure 31-2. Release from Deep Power-down (RDP) Sequence (Command AB) (QPI Mode)	74
Figure 32. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90) (SPI Mode onl	y)75
Figure 33-1. Read Security Register (RDSCUR) Sequence (Command 2B) (SPI Mode)	76
Figure 33-2. Read Security Register (RDSCUR) Sequence (Command 2B) (QPI Mode)	76
Figure 34-1. Write Security Register (WRSCUR) Sequence (Command 2F) (SPI Mode)	77
Figure 34-2. Write Security Register (WRSCUR) Sequence (Command 2F) (QPI Mode)	77
Figure 35. Word Read Quad I/O Instruction Sequence (Initial Word Read Quad I/O instruction or previou	s P4=1)
(SPI Mode only) (84MHz)	78
Figure 36. Performance Enhance Mode Reset for Fast Read Quad I/O (SPI and QPI Mode)	78
Figure 37-1. Reset Sequence (SPI mode)	79
Figure 37-2. Reset Sequence (QPI mode)	79
Figure 38. Enable Quad I/O Sequence	79
Figure 39-1. Suspend to Read Latency	80
Figure 39-2. Resume to Read Latency	80
Figure 39-3. Resume to Suspend Latency	80
Figure 40. Software Reset Recovery	80
Figure 41. Power-up Timing	81
Table 11. Power-Up Timing and VWI Threshold	81
INITIAL DELIVERY STATE	81
OPERATING CONDITIONS	
Figure 42. AC Timing at Device Power-Up	82
Figure 43. Power-Down Sequence	83
ERASE AND PROGRAMMING PERFORMANCE	
LATCH-UP CHARACTERISTICS	84
ORDERING INFORMATION	85
PART NAME DESCRIPTION	
PACKAGE INFORMATION	
REVISION HISTORY	91

16M-BIT [x 1/x 2/x 4] 1.8V CMOS MXSMIO[™] (SERIAL MULTI I/O) FLASH MEMORY 32M-BIT [x 1/x 2/x 4] 1.8V CMOS MXSMIO[™] (SERIAL MULTI I/O) FLASH MEMORY

FEATURES

GENERAL

- Serial Peripheral Interface compatible -- Mode 0 and Mode 3
- 16M:16,777,216 x 1 bit structure or 8,388,608 x 2 bits (two I/O read mode) structure or 4,194,304 x 4 bits (four I/O read mode) structure
 - 32M: 32,554,432 x 1 bit structure or 16,777,216 x 2 bits (two I/O read mode) structure or 8,388,608 x 4 bits (four I/O read mode) structure
- Equal Sectors with 4K byte each, or Equal Blocks with 32K byte each or Equal Blocks with 64K byte each
 - Any Block can be erased individually
- Single Power Supply Operation
 - 1.65 to 2.0 volt for read, erase, and program operations
- Latch-up protected to 100mA from -1V to Vcc +1V
- Low Vcc write inhibit is from 1.0V to 1.4V

PERFORMANCE

- High Performance
 - Fast read for SPI mode
 - 1 I/O: 104MHz with 8 dummy cycles
 - 2 I/O: 84MHz with 4 dummy cycles, equivalent to 168MHz
 - 4 I/O: 104MHz with 6 dummy cycles, equivalent to 416MHz
 - Fast read for QPI mode
 - 4 I/O: 84MHz with 4 dummy cycles, equivalent to 336MHz
 - 4 I/O: 104MHz with 6 dummy cycles, equivalent to 416MHz
 - Fast program time: 1.2ms(typ.) and 3ms(max.)/page (256-byte per page)
 - Byte program time: 8us (typical)
 - 8/16/32/64 byte Wrap-Around Burst Read Mode
 - Fast erase time: 42ms (typ.)/sector (4K-byte per sector); 230ms(typ.) /block (32K-byte per block); 450ms(typ.) / block (64K-byte per block); 9s(typ.) /chip for 16M; 18s(typ.) /chip for 32M
- Low Power Consumption
 - Low active read current: 20mA(max.) at 104MHz, 15mA(max.) at 84MHz
 - Low active erase/programming current: 20mA (typ.)
 - Standby current: 30uA (typ.)
- Deep Power Down: 5uA(typ.)
- Typical 100,000 erase/program cycles
- 10 years data retention

SOFTWARE FEATURES

- Input Data Format
 - 1-byte Command code
- Advanced Security Features
 - Block lock protection

The BP0-BP3 status bit defines the size of the area to be software protection against program and erase instructions

- Additional 4k-bit secured OTP for unique identifier

- · Auto Erase and Auto Program Algorithm
 - Automatically erases and verifies data at selected sector or block
 - Automatically programs and verifies data at selected page by an internal algorithm that automatically times the program pulse widths (Any page to be programed should have page in the erased state first)
- · Status Register Feature
- · Command Reset
- · Program/Erase Suspend
- Electronic Identification
 - JEDEC 1-byte manufacturer ID and 2-byte device ID
 - RES command for 1-byte Device ID
 - REMS command for 1-byte manufacturer ID and 1-byte device ID
- Support Serial Flash Discoverable Parameters (SFDP) mode

HARDWARE FEATURES

- SCLK Input
 - Serial clock input
- SI/SIO0
 - Serial Data Input or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
- SO/SIO1
 - Serial Data Output or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
- WP#/SIO2
 - Hardware write protection or serial data Input/Output for 4 x I/O read mode
- NC/SIO3
 - NC pin or Serial input & Output for 4 x I/O read mode
- PACKAGE
 - 16Mb (MX25U1635E)
 - 8-pin SOP (150mil)
 - 8-pin SOP (200mil)
 - 8-land WSON (6x5mm)
 - 8-land USON (4x4mm)
 - 32Mb (MX25U3235E)
 - 8-pin SOP (200mil)
 - 8-land WSON (6x5mm)
 - All devices are RoHS Compliant

GENERAL DESCRIPTION

The MX25U1635E are 16,777,216 bit serial Flash memory, which is configured as 2,097,152 x 8 internally. When it is in two or four I/O read mode, the structure becomes 8,388,608 bits x 2 or 4,194,304 bits x 4. The MX25U3235E are 32,554,432 bit serial Flash memory, which is configured as 4,194,304 x 8 internally. When it is in two or four I/O read mode, the structure becomes 16,777,216 bits x 2 or 8,388,608 bits x 4. MX25U1635E/MX25U3235E feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus while it is in single I/O mode. The three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is enabled by CS# input.

When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output. When it is in four I/O read mode, the SI pin, SO pin and WP# pin become SIO0 pin, SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.

The MX25U1635E/MX25U3235E MXSMIO[™] (Serial Multi I/O) provides sequential read operation on whole chip.

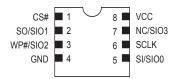
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256 bytes) basis, or word basis for erase command is executed on sector (4K-byte), block (32K-byte), or block (64K-byte), or whole chip basis.

To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read command can be issued to detect completion status of a program or erase operation via WIP bit.

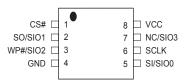
Advanced security features enhance the protection and security functions, please see security features section for more details.

When the device is not in operation and CS# is high, it is put in standby mode and typically draws 30uA DC current.

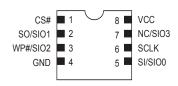
The MX25U1635E/MX25U3235E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after 100,000 program and erase cycles.


Table 1. Additional Feature Comparison

Additional	Additional Brotostics		Read Performance					
Features	Features SPI			QPI				
Part Name	Flexible Block Protection (BP0-BP3)	4K-bit security OTP	1 I/O (104 MHz)	2 I/O (84 MHz)	4 I/O (84 MHz)	4 I/O (104 MHz)	4 I/O (84 MHz)	4 I/O (104 MHz)
MX25U1635E	V	V	V	V	V	V	V	V
MX25U3235E	V	V	V	V	V	V	V	٧

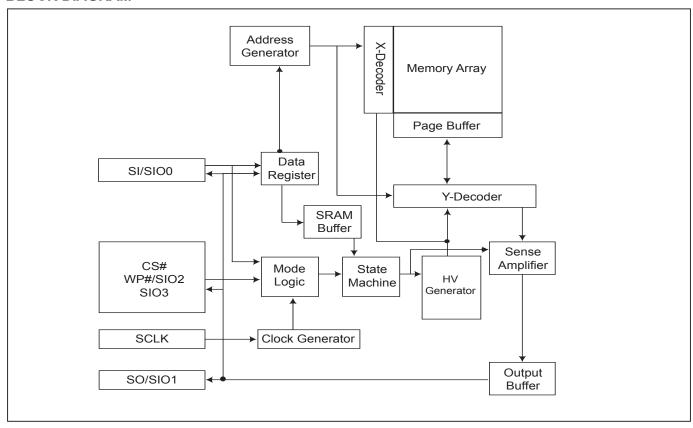

Additional Features	I IDENTITIES				
	RES REMS RDID QPIID				
Part	(command:	(command:	(command:	(Command:	
Name	AB hex)	90 hex)	9F hex)	AF hex)	
MX25U1635E	35 (hex)	C2 35 (hex) (if ADD=0)	C2 25 35	C2 25 35	
MX25U3235E	36 (hex)	C2 36 (hex) (if ADD=0)	C2 25 36	C2 25 36	

PIN CONFIGURATIONS


8-LAND USON (4x4mm)

8-PIN SOP (150mil) / 8-PIN SOP (200mil)

8-LAND WSON (6x5mm)


PIN DESCRIPTION

SYMBOL	DESCRIPTION
CS#	Chip Select
	Serial Data Input (for 1 x I/O)/ Serial
SI/SIO0	Data Input & Output (for 2xI/O or 4xI/
	O read mode)
	Serial Data Output (for 1 x I/O)/ Serial
SO/SIO1	Data Input & Output (for 2xI/O or 4xI/
	O read mode)
SCLK	Clock Input
	Write protection: connect to GND or
WP#/SIO2	Serial Data Input & Output (for 4xI/O
	read mode)
NC/SIO3	NC pin (Not connected) or Serial Data
140/0100	Input & Output (for 4xI/O read mode)
VCC	+ 1.8V Power Supply
GND	Ground

BLOCK DIAGRAM

DATA PROTECTION

The MX25U1635E/MX25U3235E is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transition. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences. The device also incorporates several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system noise.

- Power-on reset and tPUW: to avoid sudden power switch by system power supply transition, the power-on reset and tPUW (internal timer) may protect the Flash.
- Valid command length checking: The command length will be checked whether it is at byte base and completed on byte boundary.
- Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before other command to change data. The WEL bit will return to reset stage under following situation:
 - Power-up
 - Write Disable (WRDI) command completion
 - Write Status Register (WRSR) command completion
 - Page Program (PP) command completion
 - Sector Erase (SE) command completion
 - Block Erase 32KB (BE32K) command completion
 - Block Erase (BE) command completion
 - Chip Erase (CE) command completion
 - Program/Erase Suspend
 - Softreset command completion
 - Write Security Register (WRSCUR) command completion
 - Write Protection Selection (WPSEL) command completion
- Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature command (RES) and softreset command.
- Advanced Security Features: there are some protection and security features which protect content from inadvertent write and hostile access.

I. Block lock protection

- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected as read only. The protected area definition is shown as table of "Protected Area Sizes", the protected areas are more flexible which may protect various area by setting value of BP0-BP3 bits. Please refer to table of "protected area sizes".
- The Hardware Proteced Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and Status Register Write Protect bit.
- In four I/O and QPI mode, the feature of HPM will be disabled.

Table 2. Protected Area Sizes

Status bit				Protect Level			
BP3	BP3 BP2 BP1 BP0		BP0	16Mb	32Mb		
0	0	0	0	0 (none)	0 (none)		
0	0	0	1	1 (1block, protected block 31st)	1 (1block, protected block 63rd)		
0	0	1	0	2 (2blocks, protected block 30th~31st)	2 (2blocks, protected block 62nd~63rd)		
0	0	1	1	3 (4blocks, protected block 28th~31st)	3 (4blocks, protected block 60th~63rd)		
0	1	0	0	4 (8blocks, protected block 24th~31st)	4 (8blocks, protected block 56th-63rd)		
0	1	0	1	5 (16blocks, protected block 16th~31st)	5 (16blocks, protected block 48th~63rd)		
0	1	1	0	6 (32blocks, protected all)	6 (32blocks, protected block 32nd~63rd)		
0	1	1	1	7 (32blocks, protected all)	7 (64blocks, protected all)		
1	0	0	0	8 (32blocks, protected all)	8 (64blocks, protected all)		
1	0	0	1	9 (32blocks, protected all)	9 (32blocks, protected block 0th~31st)		
1	0	1	0	10 (16blocks, protected block 0th~15th)	10 (48blocks, protected block 0th~47th)		
1	0	1	1	11 (24blocks, protected block 0th~23rd)	11 (56blocks, protected block 0th~55th)		
1	1	0	0	12 (28blocks, protected block 0th~27th)	12 (60blocks, protected block 0th~59th)		
1	1	0	1	13 (30blocks, protected block 0th~29th)	13 (62blocks, protected block 0th~61st)		
1	1	1	0	14 (31blocks, protected block 0th~30th)	14 (63blocks, protected block 0th~62nd)		
1	1	1	1	15 (32blocks, protected all)	15 (64blocks, protected all)		

- **II.** Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting device unique serial number Which may be set by factory or system customer. Please refer to *Table 3. 4K-bit secured OTP definition*.
- Security register bit 0 indicates whether the chip is locked by factory or not.
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP (ENSO) command), and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security OTP (EXSO) command.
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register) command to set customer lock-down bit1 as "1". Please refer to *Table 8. Security register definition* for security register bit definition and *Table 3. 4K-bit secured OTP definition* for address range definition.
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured OTP mode, array access is not allowed.

Table 3. 4K-bit Secured OTP Definition

Address range	Size	Standard Factory Lock	Customer Lock
xxx000~xxx00F	128-bit	ESN (electrical serial number)	Determined by austemer
xxx010~xxx1FF	3968-bit	N/A	Determined by customer

Memory Organization

Table 4-1. Memory Organization (16Mb)

Block (64KB)	Block (32KB)	Sector (4KB)	Andres Rande		
	63	511	1FF000h	1FFFFFh	
31		:	:	:	
	62	496	1F0000h	1F0FFFh	
	61	495	1EF000h	1EFFFFh	
30		:	:	:	
	60	480	1E0000h	1E0FFFh	
		479	1DF000h	1DFFFFh	
29	59	:	:	:	
29	 58	464	1D0000h	1D0FFFh	
			1CF000h	1CFFFFh	
	57	463	TCF000II	ICFFFFII	
28					
	56	448	1C0000h	1C0FFFh	
	55	447	1BF000h	1BFFFFh	
27		:	:	:	
	54	432	1B0000h	1B0FFFh	
	53	431	1AF000h	1AFFFFh	
26		:	:	:	
	52	416	1A0000h	1A0FFFh	
	51	415	19F000h	19FFFFh	
25		:	:	:	
	50	400	190000h	190FFFh	
	49	399	18F000h	18FFFFh	
24	ĺ	:	:	:	
	48	384	180000h	180FFFh	
	47	383	17F000h	17FFFFh	
23		:	:	:	
	46	368	170000h	170FFFh	
	45	367	16F000h	16FFFFh	
22		:	:	:	
	44	352	160000h	160FFFh	
	43	351	15F000h	15FFFFh	
21	ĺ	:	:	:	
	42	336	150000h	150FFFh	
	41	335	14F000h	14FFFFh	
20	l ï	:	:	:	
	40	320	140000h	140FFFh	
	39	319	13F000h	13FFFFh	
19		:	:	:	
-	38	304	130000h	130FFFh	
	37	303	12F000h	12FFFFh	
18	3/				
10	36	288	120000h	120FFFh	
			120000h	11FFFFh	
47	35	287	11500011	IIFFFF()	
17		:	:	:	
	34	272	110000h	110FFFh	
	33	271	10F000h	10FFFFh	
	33				
16	33	:	:	:	

Block	Block	Sector	Addres	s Range
(64KB)	(32KB)	(4KB)		
4-	31	255	0FF000h	0FFFFFh
15		:	:	:
	30	240	0F0000h	0F0FFFh
	29	239	0EF000h	0EFFFFh
14		:	:	:
	28	224	0E0000h	0E0FFFh
40	27	223	0DF000h	0DFFFFh
13		:	:	:
	26	208	0D0000h	0D0FFFh
4.0	25	207	0CF000h	0CFFFFh
12		:	:	:
	24	192	0C0000h	0C0FFFh
	23	191	0BF000h	0BFFFFh
11		:	:	:
	22	176	0B0000h	0B0FFFh
	21	175	0AF000h	0AFFFFh
10		:	:	:
	20	160	0A0000h	0A0FFFh
	19	159	09F000h	09FFFFh
9		:	:	:
	18	144	090000h	090FFFh
	17	143	08F000h	08FFFFh
8		:	:	:
	16	128	080000h	080FFFh
	15	127	07F000h	07FFFFh
7		:	:	:
	14	112	070000h	070FFFh
	13	111	06F000h	06FFFFh
6		:	:	:
	12	96	060000h	060FFFh
	11	95	05F000h	05FFFFh
5		:	:	:
	10	80	050000h	050FFFh
	9	79	04F000h	04FFFFh
4		:	:	:
	8	64	040000h	040FFFh
	7	63	03F000h	03FFFFh
3		:	:	:
	6	48	030000h	030FFFh
	5	47	02F000h	02FFFFh
2		:	:	:
	4	32	020000h	020FFFh
	3	31	01F000h	01FFFFh
1		:	:	:
	2	16	010000h	010FFFh
		15	00F000h	00FFFFh
	1	:	:	:
0		2	002000h	002FFFh
	Ó	1	001000h	001FFFh
		0	000000h	000FFFh
	l	U	00000011	UUUFFII

Table 4-2. Memory Organization (32Mb)

Block (64KB)	Block (32KB)	Sector (4KB)	Address Range	
	127	1023	3FF000h	3FFFFFh
63		:	:	:
	126	1008	3F0000h	3F0FFFh
	125	1007	3EF000h	3EFFFFh
62		:	:	:
	124	992	3E0000h	3E0FFFh
	123	991	3DF000h	3DFFFFh
61		:	:	:
	122	976	3D0000h	3D0FFFh
	121	975	3CF000h	3CFFFFh
60		:	:	:
	120	960	3C0000h	3C0FFFh
	119	959	3BF000h	3BFFFFh
59		:	:	:
	118	944	3B0000h	3B0FFFh
	117	943	3AF000h	3AFFFFh
58		:	:	:
	116	928	3A0000h	3A0FFFh
	115	927	39F000h	39FFFFh
57		:	:	:
	114	912	390000h	390FFFh
	113	911	38F000h	38FFFFh
56		:	:	:
	112	896	380000h	380FFFh
	111	895	37F000h	37FFFFh
55		:	:	:
	110	880	370000h	370FFFh
	109	879	36F000h	36FFFFh
54		:	:	:
	108	864	360000h	360FFFh
	107	863	35F000h	35FFFFh
53		:	:	:
	106	848	350000h	350FFFh
	105	847	34F000h	34FFFFh
52		:	:	:
	104	832	340000h	340FFFh
	103	831	33F000h	33FFFFh
51		:	:	:
	102	816	330000h	330FFFh
<u> </u>	101	815	32F000h	32FFFFh
50		:	:	:
	100	800	320000h	320FFFh
	99	799	31F000h	31FFFFh
49			:	:
	98	784	310000h	310FFFh
	97	783	30F000h	30FFFFh
48	l i	:	:	:
40	96	768	300000h	300FFFh

95	Block (64KB)	Block (32KB)	Sector (4KB)	Addres	s Range
94		95	767	2FF000h	2FFFFFh
93	47		:	:	:
1		94	752	2F0000h	2F0FFFh
92 736 2E0000h 2E0FFFh 75 607 25F000h 250FFFh 25 280000h 260FFFh 25 280000h 280FFFh 280 280000h 280FFFh 28		93	751	2EF000h	2EFFFFh
91	46		:	:	:
1		92	736	2E0000h	2E0FFFh
90 720 2D0000h 2D0FFFh 89 719 2CF000h 2CFFFFh 1		91	735	2DF000h	2DFFFFh
89	45		:	:	:
1		90	720	2D0000h	2D0FFFh
88 704 2C0000h 2C0FFFh 87 703 2BF000h 2BFFFh 1 : : : 86 688 2B0000h 2B0FFFh 85 687 2AF000h 2AFFFFh 42 : : 84 672 2A0000h 2A0FFFh 83 671 29F000h 29FFFh 41 : : 82 656 290000h 290FFFh 40 : : 81 655 28F000h 28FFFh 40 : : 80 640 28000h 280FFFh 39 : : 79 639 27F000h 27FFFFh 38 : : 76 608 26000h 26FFFh 38 : : 76 608 26000h		89	719	2CF000h	2CFFFFh
1	44		:	:	:
1		88	704	2C0000h	2C0FFFh
86		87	703	2BF000h	2BFFFFh
86 688 2B0000h 2B0FFFh 85 687 2AF000h 2AFFFFh 1 : : : 84 672 2A0000h 2A0FFFh 83 671 29F000h 29FFFFh 41 : : 82 656 290000h 290FFFh 40 : : 81 655 28F000h 28FFFFh 40 : : 80 640 280000h 280FFFh 79 639 27F000h 27FFFFh 39 : : 78 624 270000h 270FFFh 38 : : 76 608 260000h 260FFFh 37 : : 75 607 25F000h 250FFFh 36 : : 72 576 24000	43		:	<u> </u>	:
42 85 687 2AF000h 2AFFFFh 84 672 2A0000h 2A0FFFh 83 671 29F000h 29FFFFh 41 : : : 82 656 290000h 290FFFh 81 655 28F000h 28FFFFh 40 : : 80 640 280000h 280FFFh 39 : : 79 639 27F000h 27FFFFh 39 : : 78 624 270000h 270FFFh 39 : : 78 624 270000h 270FFFh 38 : : : 76 608 260000h 260FFFh 38 : : : 37 : : : 38 : :			688	2B0000h	2B0FFFh
1		85	687		2AFFFFh
84 672 2A0000h 2A0FFFh 83 671 29F000h 29FFFFh 1 : : : 82 656 290000h 290FFFh 81 655 28F000h 28FFFFh 40 : : 80 640 280000h 280FFFh 79 639 27F000h 27FFFFh 39 : : 78 624 270000h 27FFFh 38 : : 76 608 260000h 26FFFh 37 : : 76 608 260000h 25FFFh 37 : : 74 592 250000h 25FFFh 36 : : 72 576 240000h 240FFFh 35 : : 70 560 230000h 230FFh 34 : : 68 <td>42</td> <td>i .</td> <td>:</td> <td>:</td> <td>:</td>	42	i .	:	:	:
41 :			672	2A0000h	2A0FFFh
41 :		83	671	29F000h	†
82 656 290000h 290FFFh 81 655 28F000h 28FFFFh 1 : : : 80 640 280000h 280FFFh 79 639 27F000h 27FFFFh 39 : : 78 624 270000h 270FFFh 78 624 270000h 270FFFh 38 : : 76 608 260000h 260FFFh 75 607 25F000h 25FFFFh 37 : : 74 592 250000h 250FFFh 36 : : 72 576 240000h 24FFFFh 35 : : 70 560 230000h 230FFFh 34 : : 69 559 22F000h 22FFFFh 33 : : 66 528 210000h 21FFFh <t< td=""><td>41</td><td></td><td>:</td><td>:</td><td>:</td></t<>	41		:	:	:
40 81 655 28F000h 28FFFFh 80 640 280000h 280FFFh 79 639 27F000h 27FFFFh 39 : : 78 624 270000h 270FFFh 77 623 26F000h 26FFFFh 38 : : 76 608 260000h 260FFFh 75 607 25F000h 25FFFFh 37 : : 74 592 250000h 250FFFh 36 : : 72 576 240000h 240FFFh 35 : : 70 560 230000h 23FFFh 34 : : 69 559 22F000h 22FFFh 34 : : 68 544 220000h 220FFFh 33 : : 66 528 210000h 210FFFh <td></td> <td></td> <td>656</td> <td>290000h</td> <td>290FFFh</td>			656	290000h	290FFFh
1		81	655		
80 640 280000h 280FFFh 79 639 27F000h 27FFFFh 39 : : : 78 624 270000h 270FFFh 77 623 26F000h 26FFFFh 38 : : : 76 608 260000h 260FFFh 37 : : : 76 608 260000h 260FFFh 37 : : : 74 592 250000h 25FFFh 36 : : : 72 576 240000h 24FFFh 35 : : : 70 560 230000h 23FFFh 34 : : : 69 559 22F000h 22FFFh 34 : : : 68 544 220000h 220FFFh 33 : : : 66 528 210000h 21FFFh 32 : : :	40	i	:	:	:
39 79 639 27F000h 27FFFFh 78 624 270000h 270FFFh 78 624 270000h 270FFFh 77 623 26F000h 26FFFFh 38 : : : 76 608 260000h 260FFFh 75 607 25F000h 25FFFFh 37 : : : 74 592 250000h 250FFFh 36 : : : 72 576 240000h 24FFFFh 35 : : : 70 560 230000h 230FFFh 34 : : : 68 544 220000h 22FFFFh 33 : : : 66 528 210000h 21FFFFh 32 : : : 32 : : :				280000h	280FFFh
1		79	639		27FFFFh
78 624 270000h 270FFFh 77 623 26F000h 26FFFFh 76 608 2600000h 260FFFh 75 607 25F000h 25FFFFh 37 : : 74 592 250000h 250FFFh 36 : : 72 576 240000h 240FFFh 35 : : 70 560 230000h 230FFFh 34 : : 68 544 220000h 22FFFFh 33 : : 66 528 210000h 21FFFh 32 : : 32 : :	39		:	:	:
38 77 623 26F000h 26FFFFh 76 608 260000h 260FFFh 75 607 25F000h 25FFFFh 37 1 : : : 74 592 250000h 250FFFh 36 1 : : : 72 576 240000h 240FFFh 35 1 : : : 70 560 230000h 230FFFh 34 1 : : : 68 544 220000h 22FFFFh 33 1 : : : 66 528 210000h 21FFFh 32 1 : : : 32 1 : : :			624 270000h		270FFFh
38 :		77	623		
76 608 260000h 260FFFh 75 607 25F000h 25FFFFh 37 1 : : : 74 592 250000h 250FFFh 36 1 : : : 72 576 240000h 240FFFh 35 1 : : : 70 560 230000h 230FFFh 34 1 : : : 68 544 220000h 22FFFFh 33 1 : : : 66 528 210000h 21FFFFh 32 1 : : : 32 1 : : :	38		:	:	:
37 75 607 25F000h 25FFFFh 74 592 250000h 250FFFh 73 591 24F000h 24FFFFh 36 : : : 72 576 240000h 240FFFh 35 : : : 70 560 230000h 230FFFh 34 : : : 68 544 220000h 22FFFFh 33 : : : 66 528 210000h 21FFFFh 32 : : :			608	260000h	260FFFh
37 : : : 74 592 250000h 250FFFh 36 : : : 72 576 240000h 240FFFh 35 : : : 70 560 230000h 230FFFh 34 : : : 68 544 220000h 22FFFFh 33 : : : 66 528 210000h 210FFFh 32 : : :		75	607		
74 592 250000h 250FFFh 73 591 24F000h 24FFFFh 36 : : : 72 576 240000h 240FFFh 35 : : : 70 560 230000h 230FFFh 34 : : : 68 544 220000h 22FFFFh 33 : : : 66 528 210000h 210FFFh 32 : : :	37	i .	:	:	:
36 73 591 24F000h 24FFFFh 72 576 240000h 240FFFh 71 575 23F000h 23FFFFh 35 1 : : 70 560 230000h 230FFFh 34 1 : : 68 544 220000h 22FFFFh 33 1 : : 66 528 210000h 210FFFh 32 1 : : : : : : : : : : : : : : : : : :			592	250000h	250FFFh
36 : : : 72 576 240000h 240FFFh 35 : : : 70 560 230000h 230FFFh 34 : : : 68 544 220000h 22FFFFh 33 : : : 66 528 210000h 21FFFh 32 : : : 33 : : : 65 527 20F000h 20FFFFh 32 : : :		73			
72 576 240000h 240FFFh	36	i .	:	:	:
35 71 575 23F000h 23FFFFh 70 560 230000h 230FFFh 34 69 559 22F000h 22FFFFh 34 1 : : : 68 544 220000h 220FFFh 33 1 : : : 66 528 210000h 210FFFh 32 1 : : : 32 1 : : :			576	240000h	240FFFh
35 : : : 70 560 230000h 230FFFh 69 559 22F000h 22FFFFh 34 : : : 68 544 220000h 220FFFh 67 543 21F000h 21FFFFh 33 : : : 66 528 210000h 210FFFh 65 527 20F000h 20FFFFh 32 : : :					
TO S60 230000h 230FFFh	35			:	:
34 69 559 22F000h 22FFFFh : : : : : : : : : : : : : : : : : :				230000h	230FFFh
34					
68 544 220000h 220FFFh 67 543 21F000h 21FFFFh 33 : : : 66 528 210000h 210FFFh 65 527 20F000h 20FFFFh 32 : :	34	i			:
33 67 543 21F000h 21FFFFh : : : : : : : : : : : : : : : : : :					220FFFh
33 : : : : 66 528 210000h 210FFFh 65 527 20F000h 20FFFFh 32 : : :					<u> </u>
66 528 210000h 210FFFh 65 527 20F000h 20FFFFh 32 : : :	33	i			:
32 527 20F000h 20FFFFh : : :					210FFFh
32 : : :					
	32		:	:	:
	- -	64	512	200000h	200FFFh

Block (64KB)	Block (32KB)	Sector (4KB)	Address	s Range
,	63	511	1FF000h	1FFFFFh
31		:	:	:
	62	496	1F0000h	1F0FFFh
	61	495	1EF000h	1EFFFFh
30		:	:	:
	60	480	1E0000h	1E0FFFh
	59	479	1DF000h	1DFFFFh
29		:	:	:
	58	464	1D0000h	1D0FFFh
	57	463	1CF000h	1CFFFFh
28		:	:	:
	56	448	1C0000h	1C0FFFh
	55	447	1BF000h	1BFFFFh
27		:	:	:
	54	432	1B0000h	1B0FFFh
	53	431	1AF000h	1AFFFFh
26		:	:	:
	52	416	1A0000h	1A0FFFh
	51	415	19F000h	19FFFFh
25		:	:	:
	50	400	190000h	190FFFh
	49	399	18F000h	18FFFFh
24	43			
	48	384	180000h	180FFFh
	47	383	17F000h	17FFFFh
23	47	:		
20	46	368	170000h	170FFFh
		367	16F000h	16FFFFh
22	45	:	101 00011	10111111
22	 44	352	160000h	160FFFh
		352	15F000h	15FFFFh
04	43	351	15500011	ISFFFFII
21	 42	:	:	:
		336	150000h	150FFFh
0.5	41	335	14F000h	14FFFFh
20		:	:	:
	40	320	140000h	140FFFh
	39	319	13F000h	13FFFFh
19		:	:	:
	38	304	130000h	130FFFh
	37	303	12F000h	12FFFFh
18		:	:	:
	36	288	120000h	120FFFh
	35	287	11F000h	11FFFFh
17		:	:	:
	34	272	110000h	110FFFh
	33	271	10F000h	10FFFFh
16			:	
	32	256	100000h	100FFFh
<u> </u>	1			

15	Block (64KB)	Block (32KB)	Sector (4KB)	Addres	s Range
15	,	`		0FF000h	0FFFFFh
30	15		:	:	:
14				0F0000h	0F0FFFh
14		29			
28	14		:	:	:
13			224	0E0000h	0E0FFFh
13		27			
26	13			:	:
12			208	0D0000h	0D0FFFh
12		25	207	0CF000h	
24	12	i	:	:	:
11				0C0000h	0C0FFFh
11		23	191		
10	11		:	:	:
10				0B0000h	0B0FFFh
10		21	175		
20	10			:	:
9				0A0000h	0A0FFFh
9 : : : : : : : : 17 143 08F000h 08FFFFh . :		19			
18 144 090000h 090FFFh 17 143 08F000h 08FFFFh 16 128 080000h 080FFFh 15 127 07F000h 07FFFFh 7 1 : : 14 112 070000h 070FFFh 6 1 : : 12 96 060000h 060FFFh 1 95 05F000h 05FFFFh 5 1 : : 10 80 050000h 050FFFh 9 79 04F000h 04FFFFh 1 : : : 8 64 040000h 040FFFh 3 1 : : 4 1 : : 8 64 040000h 040FFFh 3 1 : : 4 32 020000h 020FFFh 3 31 01F000h <td>9</td> <td></td> <td></td> <td>:</td> <td>:</td>	9			:	:
8 17 143 08F000h 08FFFFh 16 128 080000h 080FFFh 15 127 07F000h 07FFFFh 7 1 : : 14 112 070000h 070FFFh 6 1 : : 12 96 060000h 060FFFh 5 1 9 05F000h 05FFFh 5 1 : : : 10 80 050000h 050FFFh 4 1 : : : 10 80 050000h 04FFFFh : : 4 1 : : : : 8 64 040000h 04FFFFh : : : 3 1 :				090000h	090FFFh
8 :					
16	8		:	:	:
7 15 127 07F000h 07FFFFh 14 112 070000h 070FFFh 13 111 06F000h 06FFFFh 6 1 : : : 12 96 060000h 060FFFh 11 95 05F000h 05FFFFh 5 1 : : : 10 80 050000h 050FFFh 9 79 04F000h 04FFFh 1 : : : 8 64 040000h 040FFFh 3 1 : : 4 1 : : 5 47 02F000h 03FFFh 2 1 : : 4 32 020000h 02FFFh 1 1 : : 2 16 010000h 01FFFh 1 : : : 2 16 010000h 00FFFh 1 : : : </td <td></td> <td></td> <td>128</td> <td>080000h</td> <td>080FFFh</td>			128	080000h	080FFFh
7 : : : : 14 112 070000h 070FFFh 13 111 06F000h 06FFFFh : <t< td=""><td></td><td>15</td><td></td><td></td><td></td></t<>		15			
14 112 070000h 070FFFh 13 111 06F000h 06FFFh 12 96 060000h 060FFFh 11 95 05F000h 05FFFFh 10 80 050000h 050FFFh 10 80 050000h 04FFFFh 10 80 050000h 04FFFh 2 1 : : 3 1 : : 4 32 02000h 03FFFh 3 31 01F000h 01FFFh 4 32 020000h 020FFFh 1 1 : : 2 16 010000h 010FFFh 1 2 16 010000h 00FFFh 0 1 2 002000h 002FFFh 0 0 0 001000h 001FFFh	7		:	:	:
6 13 111 06F000h 06FFFFh 12 96 060000h 060FFFh 11 95 05F000h 05FFFFh 10 80 050000h 050FFFh 10 80 050000h 04FFFFh 10 80 050000h 04FFFFh 2 1 : : 3 1 : : 4 32 020000h 03FFFh 2 1 : : 4 32 020000h 02FFFh 1 1 : : 2 16 010000h 01FFFh 1 1 : : 2 16 010000h 00FFFh 1 2 002000h 002FFFh 1 2 002000h 002FFFh 0 1 001000h 001FFFh			112	070000h	070FFFh
6 : : : 12 96 060000h 060FFh 11 95 05F000h 05FFFh 10 80 050000h 050FFh 4 : : 8 64 040000h 04FFFh 1 : : : 8 64 040000h 040FFFh 1 : : : 6 48 030000h 030FFFh 2 : : 4 32 020000h 02FFFFh 1 : : 2 16 010000h 01FFFh 1 : : : 2 16 010000h 00FFFh 1 : : : 2 16 010000h 00FFFh 1 : : : 2 00F000h 00FFFh 1 1 : : 2 002000h 002FFFh 3 00F000h 00FFFh 4 001000h 001FFFh		13			
12 96 060000h 060FFFh 11 95 05F000h 05FFFFh 10 80 050000h 050FFFh 10 80 050000h 050FFFh 10 10 80 050000h 050FFFh 10 10 10 10 10 10 10 1	6	i	:	:	:
5 11 95 05F000h 05FFFFh 10 80 050000h 050FFFh 4 9 79 04F000h 04FFFh 4 1 : : : 8 64 040000h 040FFFh 9 7 63 03F000h 03FFFh 1 : : : 6 48 030000h 030FFFh 2 1 : : 4 32 02000h 02FFFh 2 1 : : 4 32 020000h 01FFFh 1 1 : : 2 16 010000h 010FFh 1 : : : 2 16 010000h 00FFFh 1 : : : 2 002000h 002FFFh 0 1 001000h 001FFFh			96	060000h	060FFFh
5 : : : 10 80 050000h 050FFFh 9 79 04F000h 04FFFh 4 : : : 8 64 040000h 040FFFh 7 63 03F000h 03FFFFh 3 : : : 6 48 030000h 030FFFh 2 : : : 4 32 02F000h 02FFFFh 1 : : : 2 16 01000h 01FFFFh 1 : : : 2 16 010000h 00FFFh 15 00F000h 00FFFFh 1 : : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh		11			
10	5	i	:	:	:
4 9 79 04F000h 04FFFh 8 64 040000h 040FFFh 7 63 03F000h 03FFFFh 3 1 : : 6 48 030000h 030FFFh 2 1 : : 4 32 020000h 020FFFh 3 31 01F000h 01FFFh 1 1 : : 2 16 010000h 010FFFh 15 00F000h 00FFFh 1 : : 2 002000h 002FFFh 0 1 2 002000h 002FFFh 0 0 0 0 0			80	050000h	050FFFh
4 : : : 8 64 040000h 040FFh 7 63 03F000h 03FFFh 3 : : : 6 48 030000h 030FFh 5 47 02F000h 02FFFh 2 : : : 4 32 020000h 020FFFh 3 31 01F000h 01FFFh 1 : : : 2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh		9	79	04F000h	04FFFFh
3 63 03F000h 03FFFFh 6 48 030000h 030FFFh 5 47 02F000h 02FFFFh 2 : : : : : : : : : : : : : : : : : : :	4	Ì	:	:	:
3 63 03F000h 03FFFh 6 48 030000h 030FFFh 5 47 02F000h 02FFFh 2 : : : : : : : : : : : : : : : : : : :		8	64	040000h	040FFFh
3 : : : 6 48 030000h 030FFh 5 47 02F000h 02FFFh 2 : : : 4 32 020000h 020FFFh 3 31 01F000h 01FFFFh 1 : : : 2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh		7		-	
6 48 030000h 030FFFh 5 47 02F000h 02FFFFh 1 : : : 3 31 01F000h 01FFFFh 1 : : : 2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh	3	i .		:	
2				030000h	
2 : : : :		5		t	i—————
4 32 020000h 020FFFh 3 31 01F000h 01FFFFh 1 : : : 2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh	2	l .	:	:	:
3 31 01F000h 01FFFFh 1 : : : 2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh				020000h	020FFFh
1 : : : : : : : : : : : : : : : : : :		3		i	
2 16 010000h 010FFFh 15 00F000h 00FFFFh 1 : : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh	1			:	:
15 00F000h 00FFFFh 1 : : : 0 2 002000h 002FFFh 0 1 001000h 001FFFh				i	010FFFh
0 1 : : : : :					
0 2 002000h 002FFFh 0 1 001000h 001FFFh		1		:	:
0 1 001000h 001FFFh	0	i .		002000h	002FFFh
		1		t	
3 00000011 00011111			0	000000h	000FFFh

DEVICE OPERATION

- 1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
- 2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.
- 3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until next CS# rising edge.
- 4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as Figure 1. "Serial Modes Supported".
- 5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, RDSFDP, 2READ, 4READ, RES, REMS, SQIID, RDBLOCK, the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE32K, BE, CE, PP, 4PP, DP, ENSO, EXSO, WRSCUR, WPSEL, SBLK, SBULK, GBULK, SUSPEND, RESUME, NOP, RSTEN, RST, EQIO, RSTQIO the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
- 6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase.

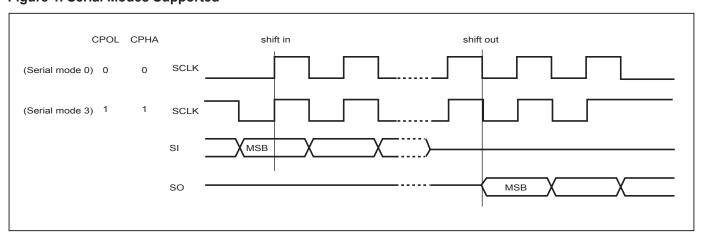
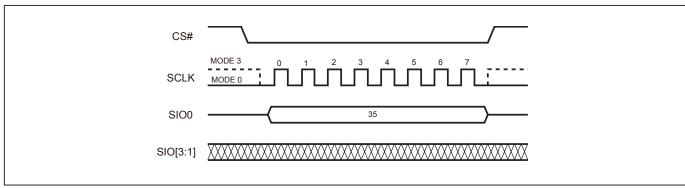


Figure 1. Serial Modes Supported

Note:

CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is supported.

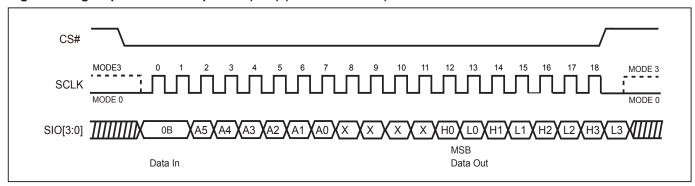

Quad Peripheral Interface (QPI) Read Mode

QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in command cycles, address cycles and as well as data output cycles.

Enable QPI mode

By issuing 35H command, the QPI mode is enable.

Figure 2. Enable QPI Sequence (Command 35H)

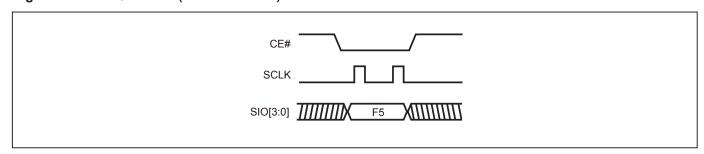


Quad Peripheral Interface (QPI) operation

To use QPI protocol, the host drives CS# low then sends the Fast Read command, 0BH, followed by 6 address cycles and four dummy cycles. Most significant bit (MSB) comes first, as shown in figure 3.

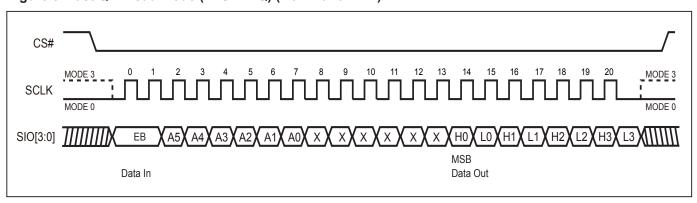
After the dummy cycle, the Quad Peripheral Interface (QPI) Flash Memory outputs data on the falling edge of the SCLK signal starting from the specified address location. The device continually streams data output through all addresses until terminated by a low-to-high transition on CS#. The internal address pointer automatically increases until the highest memory address is reached. When reached the highest memory address, the address pointer returns to the beginning of the address space.

Figure 3. High-Speed Read Sequence (QPI) (Command 0BH)



Reset QPI mode

By issuing F5H command, the device is reset to 1-I/O SPI mode.


Figure 4. Reset QPI Mode (Command F5H)

Fast QPI Read mode (FASTRDQ)

To increase the code transmission speed, the device provides a "Fast QPI Read Mode" (FASTRDQ). By issuing command code EBH, the FASTRDQ mode is enable. The number of dummy cycle increase from 4 to 6 cycles. The read cycle frequency will increase from 84MHz to 104MHz.

Figure 5. Fast QPI Read Mode (FASTRDQ) (Command EBH)

COMMAND DESCRIPTION

Table 5. Command Set

Read Commands

I/O	1	1	1	2	4	4	4	4
Read Mode	SPI	SPI	SPI	SPI	SPI	SPI	QPI	QPI
Command (byte)	READ (normal read)	FAST READ * (fast read data)	RDSFDP (Read SFDP)	2READ (2 x I/O read command) Note1	W4READ	4READ * (4 x I/O read command) Note1	FAST READ * (fast read data)	4READ * (4 x I/O read command) Note1
Clock rate (MHz)	33	104	104	84	84	104	84	104
1st byte	03 (hex)	0B (hex)	5A (hex)	BB (hex)	E7 (hex)	EB (hex)	0B (hex)	EB (hex)
2nd byte	AD1(8)	AD1(8)	AD1(8)	AD1(4)	AD1(2)	AD1(2)	AD1(2)	AD1(2)
3rd byte	AD2(8)	AD2(8)	AD2(8)	AD2(4)	AD2(2)	AD2(2)	AD2(2)	AD2(2)
4th byte	AD3(8)	AD3(8)	AD3(8)	AD3(4)	AD3(2)	AD3(2)	AD3(2)	AD3(2)
5th byte		Dummy(8)	Dummy(8)	Dummy(4)	Dummy(4)	Dummy(6)	Dummy(4)	Dummy(6)
Action	n bytes read out until CS# goes high	n bytes read out until CS# goes high	Read SFDP mode	n bytes read out by 2 x l/ O until CS# goes high	Quad I/O read with 4 dummy cycles in 84MHz	Quad I/O read with 6 dummy cycles in 104MHz	n bytes read out until CS# goes high	Quad I/O read with 6 dummy cycles in 104MHz

Program/Erase Commands

Command (byte)	WREN* (write enable)	WRDI * (write disable)	,	WRSR * (write status register)	\ I	SE * (sector erase)	BE 32K * (block erase 32KB)
1st byte	06 (hex)	04 (hex)	05 (hex)	01 (hex)	38 (hex)	20 (hex)	52 (hex)
2nd byte				Values	AD1	AD1	AD1
3rd byte					AD2	AD2	AD2
4th byte					AD3	AD3	AD3
Action	sets the (WEL) write enable latch bit	resets the (WEL) write enable latch bit	to read out the values of the status register	to write new values of the status register	quad input to program the selected page	to erase the selected sector	to erase the selected 32K block

Command (byte)	BE * (block erase 64KB)	CE * (chip erase)	PP * (page program)	DP * (Deep power down)	RDP * (Release from deep power down)	PGM/ERS Suspend * (Suspends Program/ Erase)	PGM/ERS Resume * (Resumes Program/ Erase)
1st byte	D8 (hex)	60 or C7 (hex)	02 (hex)	B9 (hex)	AB (hex)	B0 (hex)	30 (hex)
2nd byte	AD1		AD1				
3rd byte	AD2		AD2				
4th byte	AD3		AD3				
Action	to erase the selected block	to erase whole chip	to program the selected page	enters deep power down mode	release from deep power down mode		

Security/ID/Mode Setting/Reset Commands

Command (byte)	RDID (read identification)	RES (read electronic ID)	REMS (read electronic manufacturer & device ID)	ENSO * (enter secured OTP)	EXSO * (exit secured OTP)	RDSCUR * (read security register)	WRSCUR * (write security register)
1st byte	9F (hex)	AB (hex)	90 (hex)	B1 (hex)	C1 (hex)	2B (hex)	2F (hex)
2nd byte		Х	Х				
3rd byte		Х	х				
4th byte		Х	ADD (Note 2)				
5th byte							
Action	outputs JEDEC ID: 1-byte Manufact-urer ID & 2-byte Device ID	to read out 1-byte Device ID	output the Manufacturer ID & Device ID	to enter the 4K-bit secured OTP mode	to exit the 4K- bit secured OTP mode	to read value of security register	to set the lock- down bit as "1" (once lock- down, cannot be update)

COMMAND (byte)	SBLK * (single block lock	SBULK * (single block unlock)	RDBLOCK * (block protect read)	GBLK * (gang block lock)	GBULK * (gang block unlock)	NOP * (No Operation)	RSTEN * (Reset Enable)
1st byte	36 (hex)	39 (hex)	3C (hex)	7E (hex)	98 (hex)	00 (hex)	66 (hex)
2nd byte	AD1	AD1	AD1				
3rd byte	AD2	AD2	AD2				
4th byte	AD3	AD3	AD3				
Action	block (64K- byte) or sector	` ,	block or sector write protect		whole chip unprotect		

COMMAND (byte)	RST * (Reset Memory)	EQIO (Enable Quad I/O)	RSTQIO (Reset Quad I/ O)	QPIID (QPI ID Read)	SBL * (Set Burst Length)	WPSEL * (Write Protect Selection)
1st byte	99 (hex)	35 (hex)	F5 (hex)	AF (hex)	C0 (hex)	68 (hex)
2nd byte					Value	
3rd byte						
4th byte						
Action		Entering the QPI mode	Exiting the QPI mode	ID in QPI interface	to set Burst length	to enter and enable individal block protect mode

- Note 1: Command set highlighted with (*) are supported both in SPI and QPI mode.
- Note 2: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SI/SIO1 which is different from 1 x I/O condition.
- Note 3: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.
- Note 4: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hidden mode.
- Note 5: RST command only executed if RSTEN command is executed first. Any intervening command will disable Reset.

(1) Write Enable (WREN)

The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP, SE, BE32K, BE, CE, and WRSR, which are intended to change the device content WEL bit should be set every time after the WREN instruction setting the WEL bit.

The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in SPI mode. (Please refer to *Figure 13-1* and *Figure 13-2*)

(2) Write Disable (WRDI)

The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.

The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care in SPI mode. (Please refer to *Figure 14-1* and *Figure 14-2*)

The WEL bit is reset by following situations:

- Power-up
- Completion of Write Disable (WRDI) instruction
- Completion of Write Status Register (WRSR) instruction
- Completion of Page Program (PP) instruction
- Completion of Quad Page Program (4PP) instruction
- Completion of Sector Erase (SE) instruction
- Completion of Block Erase 32KB (BE32K) instruction
- Completion of Block Erase (BE) instruction
- Completion of Chip Erase (CE) instruction
- Pgm/Ers Suspend

(3) Read Identification (RDID)

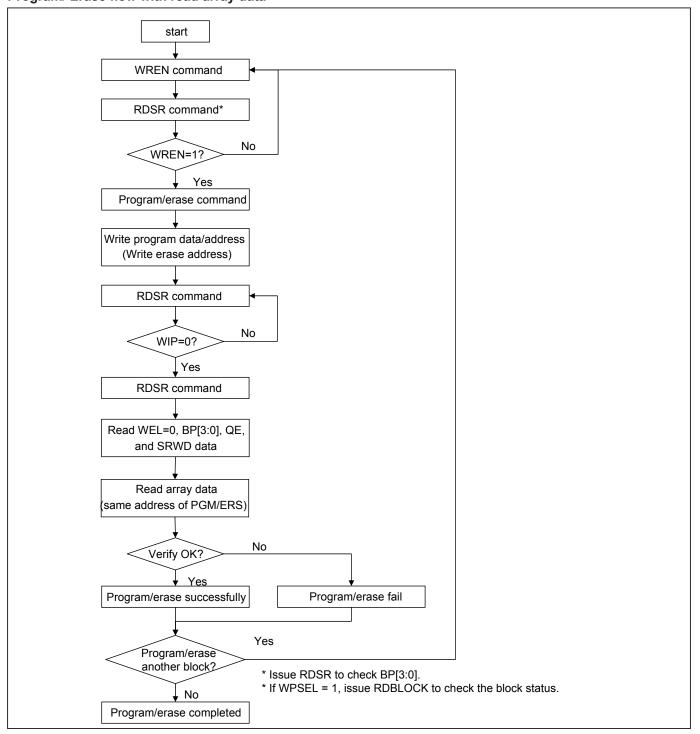
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as *Table 7*. ID Definitions.

The sequence of issuing RDID instruction is: CS# goes low \rightarrow sending RDID instruction code \rightarrow 24-bits ID data out on SO \rightarrow to end RDID operation can drive CS# to high at any time during data out.

While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.

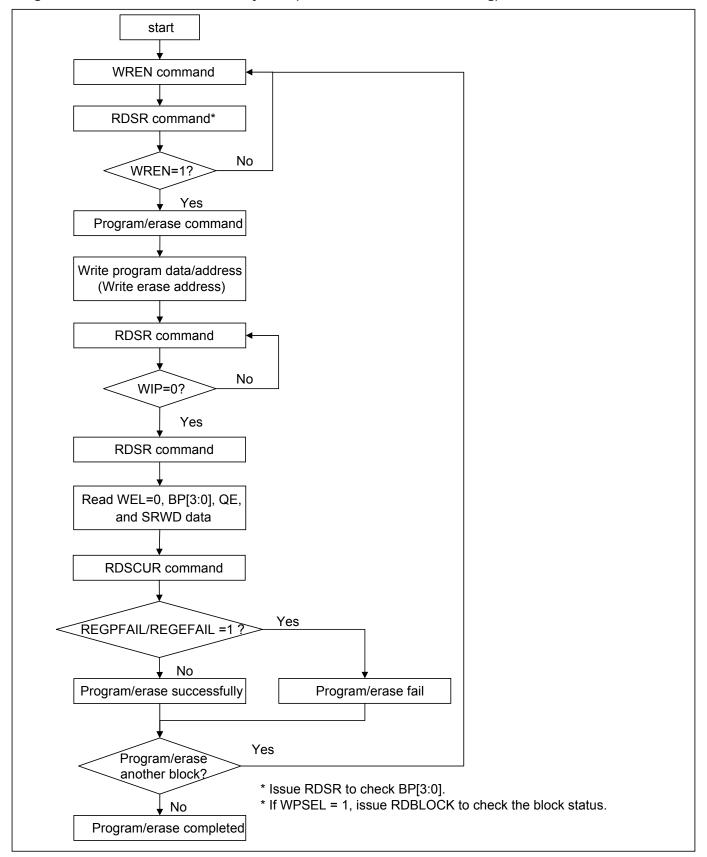
(4) Read Status Register (RDSR)

The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress.

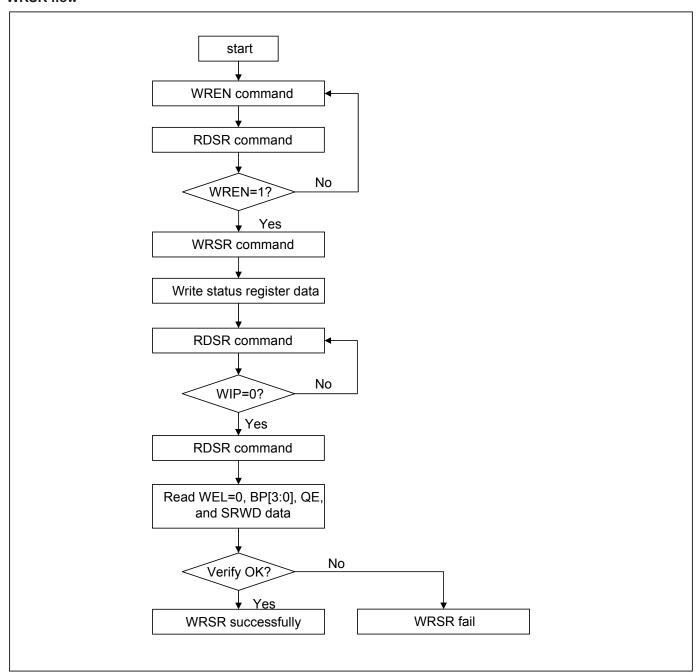


The sequence of issuing RDSR instruction is: CS# goes low \rightarrow sending RDSR instruction code \rightarrow Status Register data out on SO.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 16-1* and *Figure 16-2*)


For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:

Program/ Erase flow with read array data



Program/ Erase flow without read array data (read REGPFAIL/REGEFAIL flag)

WRSR flow

The definition of the status register bits is as below:

WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register cycle.

WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/ erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device will not accept program/erase/write status register instruction. The program/erase command will be ignored if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next program/erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL bit needs to be confirm to be 0.

BP3, **BP2**, **BP1**, **BP0** bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as defined in table 2) of the device to against the program/erase instruction without hardware protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits (BP3:BP0) set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default. Which is un-protected.

QE bit. The Quad Enable (QE) bit, non-volatile bit, performs SPI Quad modes when it is reset to "0" (factory default) to enable WP# or is set to "1" to enable Quad SIO2 and SIO3. QE bit is only valid for SPI mode. When operate in SPI mode, and quad IO read is desired (for command EBh/E7h, or quad IO program, 38h). WRSR command has to be set the through Status Register bit 6, the QE bit. Then the SPI Quad I/O commands (EBh/E7h/38h) will be accepted by flash. If QE bit is not set, SPI Quad I/O commands (EBh/E7h/38h) will be invalid commands, the device will not respond to them. Once QE bit is set, all SPI commands are valid. 1I/O commands and 2IO commands can be issued no matter QE bit is "0" or "1". When in QPI mode, QE bit will not affect the operation of QPI mode at all. Therefore either "0" or "1" value of QE bit does not affect the QPI mode operation.

SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection (WP#/SIO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are read only. The SRWD bit defaults to be "0".

Status Register

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SRWD (status register write protect)	QE (Quad Enable)	BP3 (level of protected block)	BP2 (level of protected block)	BP1 (level of protected block)	BP0 (level of protected block)	WEL (write enable latch)	WIP (write in progress bit)
1=status register write disable	1=Quad Enable 0=not Quad Enable	(note 1)	(note 1)	(note 1)	(note 1)	1=write enable 0=not write enable	1=write operation 0=not in write operation
Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	volatile bit	volatile bit

Note 1: See the Table 2 "Protected Area Size".

(5) Write Status Register (WRSR)

The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory (as shown in *table 2*). The WRSR also can set or reset the Quad enable (QE) bit and set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot be executed once the Hardware Protected Mode (HPM) is entered.

The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register data on SI→CS# goes high. (Please refer to *Figure 17-1* and *Figure 17-2*)

The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL) bit is reset.

Table 6. Protection Modes

Mode	Status register condition	WP# and SRWD bit status	Memory
Software protection mode (SPM)	Status register can be written in (WEL bit is set to "1") and the SRWD, BP0-BP3 bits can be changed	WP#=1 and SRWD bit=0, or WP#=0 and SRWD bit=0, or WP#=1 and SRWD=1	The protected area cannot be program or erase.
Hardware protection mode (HPM)	The SRWD, BP0-BP3 of status register bits cannot be changed	WP#=0, SRWD bit=1	The protected area cannot be program or erase.

Note:

1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 2.

As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).

Software Protected Mode (SPM):

- When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software protected mode (SPM).
- When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software protected mode (SPM)

Note:

If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously been set. It is rejected to write the Status Register and not be executed.

Hardware Protected Mode (HPM):

- When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2, BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.

Note:

To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered. If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only can use software protected mode via BP3, BP2, BP1, BP0.

If the system enter QPI or set QE=1, the feature of HPM will be disabled.

(6) Read Data Bytes (READ)

The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been reached.

The sequence of issuing READ instruction is: CS# goes low \rightarrow sending READ instruction code \rightarrow 3-byte address on SI \rightarrow data out on SO \rightarrow to end READ operation can use CS# to high at any time during data out. (Please refer to *Figure 18*)

(7) Read Data Bytes at Higher Speed (FAST_READ)

The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached.

Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low \rightarrow sending FAST_READ instruction code \rightarrow 3-byte address on SI \rightarrow 1-dummy byte (default) address on SI \rightarrow data out on SO \rightarrow to end FAST_READ operation can use CS# to high at any time during data out. (Please refer to *Figure 19-1*)

Read on QPI Mode The sequence of issuing FAST_READ instruction in QPI mode is: CS# goes low \rightarrow sending FAST_READ instruction, 2 cycles \rightarrow 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow 4 dummy cycles \rightarrow data out interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow to end QPI FAST_READ operation can use CS# to high at any time during data out. (Please refer to *Figure 19-2*)

In the performance-enhancing mode, P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h,5Ah,F0h or 0Fh can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from performance enhance mode and return to normal operation.

While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

(8) 2 x I/O Read Mode (2READ)

The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising

edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.

The sequence of issuing 2READ instruction is: CS# goes low \rightarrow sending 2READ instruction \rightarrow 24-bit address interleave on SIO1 & SIO0 \rightarrow 4 dummy cycles on SIO1 & SIO0 \rightarrow data out interleave on SIO1 & SIO0 \rightarrow to end 2READ operation can use CS# to high at any time during data out (Please refer to *Figure 20* for 2 x I/O Read Mode Timing Waveform).

While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

(9) 4 x I/O Read Mode (4READ)

The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ. The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit.

4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low \rightarrow sending 4READ instruction \rightarrow 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow 2+4 dummy cycles \rightarrow data out interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow to end 4READ operation can use CS# to high at any time during data out.

W4READ instruction (E7) is also available is SPI mode for 4 I/O read. The sequence is similar to 4READ, but with only 4 dummy cycles. The clock rate runs at 84MHz.

4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The sequence of issuing 4READ instruction QPI mode is: CS# goes low→ sending 4READ instruction→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ operation can use CS# to high at any time during data out (Please refer to *Figure 21* for 4 x I/O Read Mode Timing Waveform).

Another sequence of issuing 4 READ instruction especially useful in random access is : CS# goes low \rightarrow sending 4 READ instruction \rightarrow 3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 \rightarrow performance enhance toggling bit P[7:0] \rightarrow 4 dummy cycles \rightarrow data out still CS# goes high \rightarrow CS# goes low (reduce 4 Read instruction) \rightarrow 24-bit random access address (Please refer to *Figure 22-1* and *Figure 22-2* for 4 x I/O Read Enhance Performance Mode Timing Waveform).

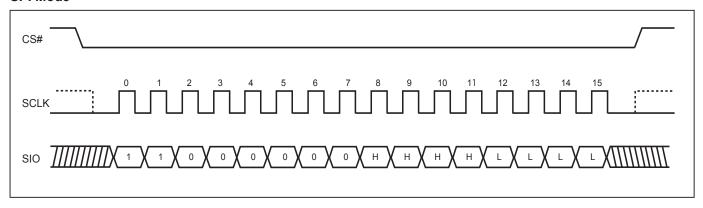
In the performance-enhancing mode, P[7:4] must be toggling with P[3:0]; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from performance enhance mode and return to normal operation.

While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.

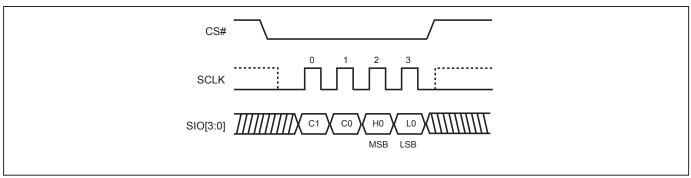
(10) Burst Read

This device supports Burst Read in both SPI and QPI mode.

To set the Burst length, following command operation is required


Issuing command: "C0h" in the first Byte (8-clocks), following 4 clocks defining wrap around enable with "0h" and disable with "1h".

Next 4 clocks is to define wrap around depth. Definition as following table:


Data	Wrap Around	Wrap Depth	Data	Wrap Around	Wrap Depth
1xh	No	Χ	00h	Yes	8-byte
1xh	No	Χ	01h	Yes	16-byte
1xh	No	Χ	02h	Yes	32-byte
1xh	No	Χ	03h	Yes	64-byte

The wrap around unit is defined within the 256Byte page, with random initial address. It's defined as "wrap-around mode disable" for the default state of the device. To exit wrap around, it is required to issue another "C0" command in which data='1xh". Otherwise, wrap around status will be retained until power down or reset command. To change wrap around depth, it is required to issue another "C0" command in which data="0xh". QPI "0Bh" "EBh" and SPI "EBh" "E7h" support wrap around feature after wrap around enable. Burst read is supported in both SPI and QPI mode. The device id default without Burst read.

SPI Mode

QPI Mode

Note: MSB=Most Significant Bit LSB=Least Significant Bit

(11) Performance Enhance Mode

The device could waive the command cycle bits if the two cycle bits after address cycle toggles. (Please note *Figure* 22-1 and *Figure* 22-2. 4xl/O Read enhance performance mode sequence)

Performance enhance mode is supported in both SPI and QPI mode.

In QPI mode, "EBh" "0Bh" and SPI "EBh" "E7h" commands support enhance mode. The performance enhance mode is not supported in dual I/O mode.

After entering enhance mode, following CSB go high, the device will stay in the read mode and treat CSB go low of the first clock as address instead of command cycle.

To exit enhance mode, a new fast read command whose first two dummy cycles is not toggle then exit. Or issue "FFh" command to exit enhance mode.

(12) Performance Enhance Mode Reset (FFh)

To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh command code, 8 clocks, should be issued in 1I/O sequence. In QPI Mode, FFFFFFFh command code, 8 clocks, in 4I/O should be issued. (Please refer to *Figure 36*)

If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.

Upon Reset of main chip, SPI instruction would be issued from the system. Instructions like Read ID (9Fh) or Fast Read (0Bh) would be issued.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 36*)

(13) Sector Erase (SE)

The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Sector Erase (SE). Any address of the sector (see table of memory organization) is a valid address for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.

Address bits [Am-A12] (Am is the most significant address) select the sector address.

The sequence of issuing SE instruction is: CS# goes low \rightarrow sending SE instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 25-1* and *Figure 25-2*)

The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the sector is protected by BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the sector.

(14) Block Erase (BE32K)

The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE32K). Any address of the block (see table of memory organization) is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.

The sequence of issuing BE32K instruction is: CS# goes low \rightarrow sending BE32K instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 26-1* and *Figure 26-2*)

The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Block Erase cycle is in progress. The WIP sets 1 during the tBE32K timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the block is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (tBE32K) instruction will not be executed on the block.

(15) Block Erase (BE)

The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for 64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (Please refer to table of memory organization) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.

The sequence of issuing BE instruction is: CS# goes low \rightarrow sending BE instruction code \rightarrow 3-byte address on SI \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 27-1* and *Figure 27-2*)

The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Block Erase cycle is in progress. The WIP sets 1 during the tBE timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the block is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the block.

(16) Chip Erase (CE)

The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.

The sequence of issuing CE instruction is: CS# goes low—sending CE instruction code—CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 28-1* and *Figure 28-2*)

The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in

Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is protected by BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP3, BP2, BP1, BP0 all set to "0".

(17) Page Program (PP)

The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed, A7-A0 (The eight least significant address bits) should be set to 0. If the eight least significant address bits (A7-A0) are not all 0, all transmitted data going beyond the end of the current page are programmed from the start address of the same page (from the address A7-A0 are all 0). If more than 256 bytes are sent to the device, the data of the last 256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent to the device, the data is programmed at the requested address of the page without effect on other address of the same page.

The sequence of issuing PP instruction is: CS# goes low \rightarrow sending PP instruction code \rightarrow 3-byte address on SI \rightarrow at least 1-byte on data on SI \rightarrow CS# goes high. (Please refer to *Figure 23-1* and *Figure 23-2*)

The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte boundary(the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.

The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the page is protected by BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to Figure 23)

(18) 4 x I/O Page Program (4PP)

The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and SIO3 as address and data input, which can improve programmer performance and the effectiveness of application of lower clock less than 33MHz. For system with faster clock, the Quad page program cannot provide more actual favors, because the required internal page program time is far more than the time data flows in. Therefore, we suggest that while executing this command (especially during sending data), user can slow the clock speed down to 33MHz below. The other function descriptions are as same as standard page program.

The sequence of issuing 4PP instruction is: CS# goes low \rightarrow sending 4PP instruction code \rightarrow 3-byte address on SIO[3:0] \rightarrow at least 1-byte on data on SIO[3:0] \rightarrow CS# goes high.

(19) Deep Power-down (DP)

The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in deep power-down mode not standby mode. It's different from Standby mode.

The sequence of issuing DP instruction is: CS# goes low→sending DP instruction code→CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. (Please refer to *Figure 29-1* and *Figure 29-2*)

Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP) and Read Electronic Signature (RES) instruction and softreset command. (those instructions allow the ID being reading out). When Power-down, or software reset command the deep power-down mode automatically stops, and when power-up, the device automatically is in standby mode. For DP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down mode.

(20) Release from Deep Power-down (RDP), Read Electronic Signature (RES)

The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2(max), as specified in *Table 10*. AC Characteristics. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The RDP instruction is only for releasing from Deep Power Down Mode.

RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID Definitions on next page. This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.

The sequence is shown as *Figure 30*, *Figure 31-1* and *Figure 31-2*. Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.

Only SPI (8 clocks) command cycle can accept by this instruction.

The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute instruction.

(21) Read Electronic Manufacturer ID & Device ID (REMS)

The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID.

The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in *Figure 32*. The Device ID values are listed in *Table 7* of ID Definitions. If the one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.

(22) QPI ID Read (QPIID)

The QPIID Read instruction identifies the devices as MX25U1635E/3235E and manufacturer as Macronix. The sequence of issue QPIID instruction is CS# goes low—sending QPI ID instruction— \rightarrow Data out on SO—CS# goes high. Most significant bit (MSB) first.

Immediately following the command cycle the device outputs data on the falling edge of the SCLK signal. The data output stream is continuous until terminated by a low-tohigh transition of CS#. The device outputs three bytes of data: manufacturer, device type, and device ID.

Table 7. ID Definitions

Command Type	MX25U1635E			MX25U3235E		
RDID (JEDEC ID)	manufacturer ID	memory type	memory density	manufacturer ID	memory type	memory density
	C2	25	35	C2	25	36
RES	electronic ID			electronic ID		
	35			36		
REMS	manufacturer ID	device ID		manufacturer ID	device ID	
	C2	35		C2	36	

(23) Enter Secured OTP (ENSO)

The ENSO instruction is for entering the additional 4K-bit secured OTP mode. The additional 4K-bit secured OTP is independent from main array, which may use to store unique serial number for system identifier. After entering the Secured OTP mode, and then follow standard read or program, procedure to read out the data or update data. The Secured OTP data cannot be updated again once it is lock-down.

The sequence of issuing ENSO instruction is: CS# goes low \rightarrow sending ENSO instruction to enter Secured OTP mode \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

Please note that WRSR/WRSCUR commands are not acceptable during the access of secure OTP region, once security OTP is lock down, only read related commands are valid.

(24) Exit Secured OTP (EXSO)

The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.

The sequence of issuing EXSO instruction is: CS# goes low \rightarrow sending EXSO instruction to exit Secured OTP mode \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

(25) Read Security Register (RDSCUR)

The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read at any time (even in program/erase/write status register/write security register condition) and continuously.

The sequence of issuing RDSCUR instruction is : CS# goes low \rightarrow sending RDSCUR instruction \rightarrow Security Register data out on SO \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. Please see *Figure 33-1* & *Figure 33-2*.

The definition of the Security Register bits is as below:

Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory or not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.

Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP area cannot be update any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.

Table 8. Security Register Definition

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
WPSEL	E_FAIL	P_FAIL	Reserved	Erase Suspend bit	Program Suspend bit	LDSO (indicate if lock-down)	Secured OTP indicator bit
0=normal WP mode 1=individual mode (default=0)	0=normal Erase succeed 1=individual Erase failed (default=0)	0=normal Program succeed 1=indicate Program failed (default=0)	-	0=Erase is not suspended 1= Erase suspended (default=0)	0=Program is not suspended 1= Program suspended (default=0)	0 = not lock- down 1 = lock-down (cannot program/ erase OTP)	0 = non- factory lock 1 = factory lock
Non-volatile bit (OTP)	Volatile bit	Volatile bit	Volatile bit	Volatile bit	Volatile bit	Non-volatile bit (OTP)	Non-volatile bit (OTP)

(26) Write Security Register (WRSCUR)

The WRSCUR instruction is for setting the values of Security Register Bits. The WREN (Write Enable) instruction is required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area cannot be updated any more. The LDSO bit is an OTP bit. Once the LDSO bit is set, the value of LDSO bit can not be altered any more.

The sequence of issuing WRSCUR instruction is :CS# goes low \rightarrow sending WRSCUR instruction \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode. Please see *Figure 34-1* & *Figure 34-2*.

The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.

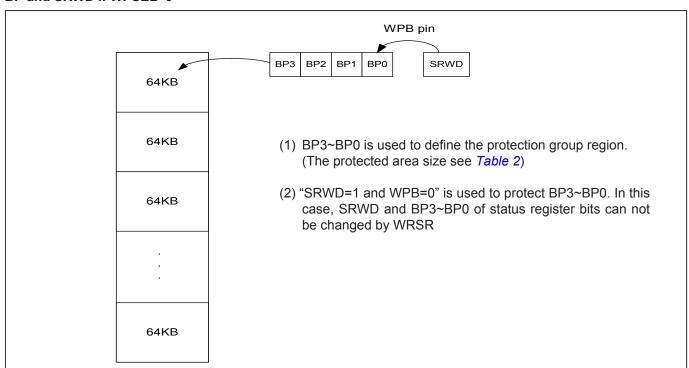
(27) Write Protection Selection (WPSEL)

There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If WPSEL=0, flash is under BP protection mode . If WPSEL=1, flash is under individual block protection mode. The default value of WPSEL is "0". WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an OTP bit. Once WPSEL is set to 1, there is no chance to recovery WPSEL back to "0". If the flash is put on BP mode, the individual block protection mode is disabled. Contrarily, if flash is on the individual block protection mode, the BP mode is disabled.

Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1, all the blocks or sectors will be write protected by default. User may only unlock the blocks or sectors via SBULK and GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is conducted.

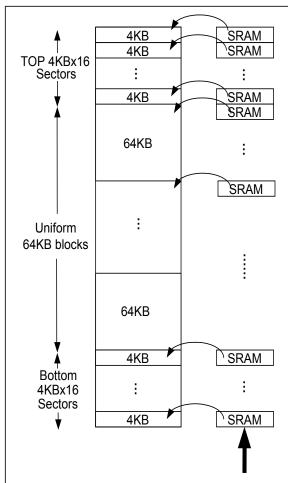
BP protection mode, WPSEL=0:

ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by "SRWD=1 and WP#=0", where SRWD is bit 7 of status register that can be set by WRSR command.


<u>Individual block protection mode, WPSEL=1:</u>

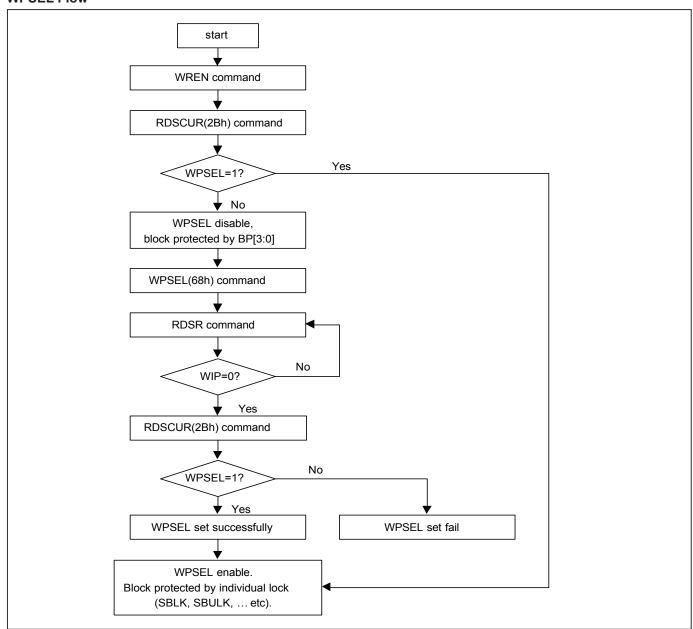
Blocks are individually protected by their own SRAM lock bits which are set to "1" after power up. SBULK and SBLK command can set SRAM lock bit to "0" and "1". When the system accepts and executes WPSEL instruction, the bit 7 in security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK etc instructions to conduct block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0) indicated block methods. Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0. Once WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.

The sequence of issuing WPSEL instruction is: CS# goes low \rightarrow sending WPSEL instruction to enter the individual block protect mode \rightarrow CS# goes high.


WPSEL instruction function flow is as follows:

BP and SRWD if WPSEL=0

The individual block lock mode is effective after setting WPSEL=1

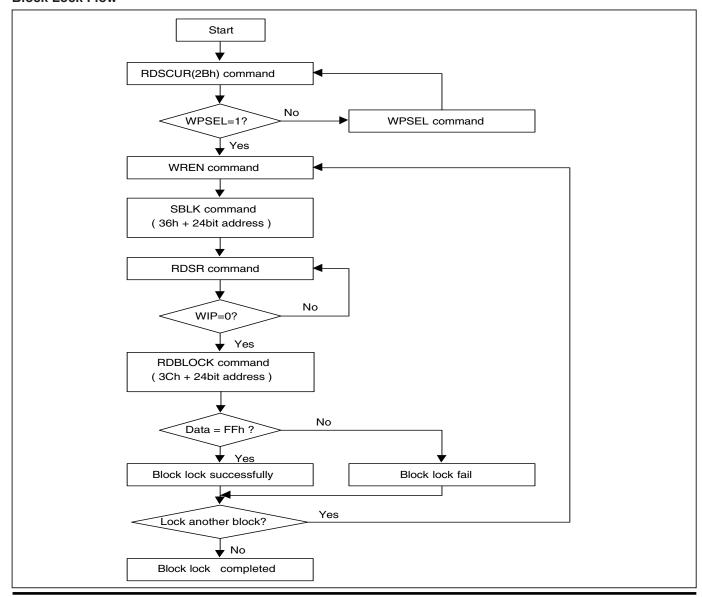

- Power-Up: All SRAM bits=1 (all blocks are default protected).
 All array cannot be programmed/erased
- SBLK/SBULK(36h/39h):
 - SBLK(36h): Set SRAM bit=1 (protect): array can not be programmed/erased
 - SBULK(39h): Set SRAM bit=0 (unprotect): array can be programmed/erased
 - All top 4KBx16 sectors and bottom 4KBx16 sectors and other 64KB uniform blocks can be protected and unprotected SRAM bits individually by SBLK/SBULK command set.
- GBLK/GBULK(7Eh/98h):
 - GBLK(7Eh): Set all SRAM bits=1,whole chip are protected and cannot be programmed/erased.
 - GBULK(98h): Set all SRAM bits=0,whole chip are unprotected and can be programmed/erased.
 - All sectors and blocks SRAM bits of whole chip can be protected and unprotected at one time by GBLK/GBULK command set.
- RDBLOCK(3Ch):
 - use RDBLOCK mode to check the SRAM bits status after SBULK /SBLK/GBULK/GBLK command set.

SBULK / SBLK / GBULK / GBLK / RDBLOCK

WPSEL Flow

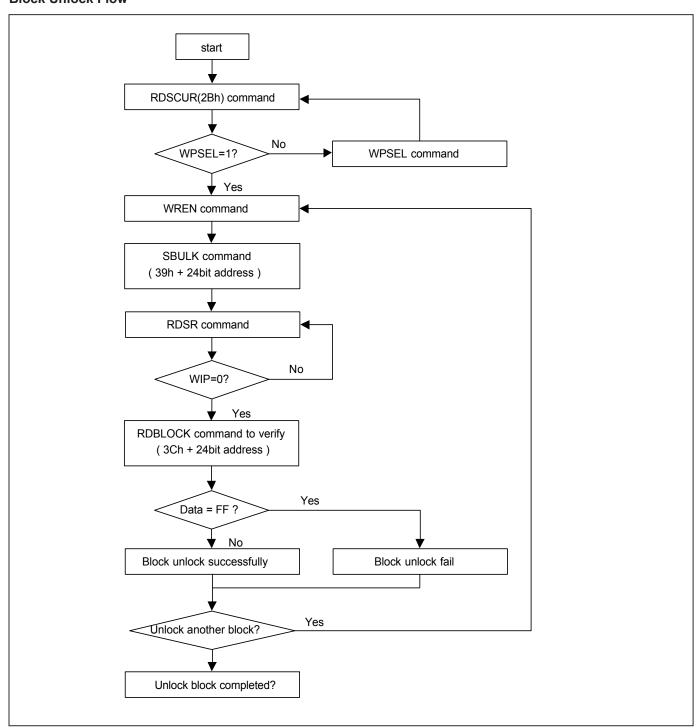
(28) Single Block Lock/Unlock Protection (SBLK/SBULK)

These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a specified block (or sector) of memory, using A_{MAX} -A16 or $(A_{MAX}$ -A12) address bits to assign a 64Kbyte block (or 4K bytes sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state. This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).


The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.

The sequence of issuing SBLK/SBULK instruction is: CS# goes low \rightarrow send SBLK/SBULK (36h/39h) instruction \rightarrow send 3 address bytes assign one block (or sector) to be protected on SI pin \rightarrow CS# goes high. The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.


SBLK/SBULK instruction function flow is as follows:

Block Lock Flow

Block Unlock Flow

(29) Read Block Lock Status (RDBLOCK)

This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of protection lock of a specified block (or sector), using A_{MAX} -A16 (or A_{MAX} -A12) address bits to assign a 64K bytes block (4K bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1" to indicate that this block has be protected, that user can read only but cannot write/program /erase this block. The status bit is "0" to indicate that this block hasn't be protected, and user can read and write this block.

The sequence of issuing RDBLOCK instruction is: CS# goes low \rightarrow send RDBLOCK (3Ch) instruction \rightarrow send 3 address bytes to assign one block on SI pin \rightarrow read block's protection lock status bit on SO pin \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

(30) Gang Block Lock/Unlock (GBLK/GBULK)

These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable the lock protection block of the whole chip.

The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.

The sequence of issuing GBLK/GBULK instruction is: CS# goes low \rightarrow send GBLK/GBULK (7Eh/98h) instruction \rightarrow CS# goes high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.

(31) Program/Erase Suspend/Resume

The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other operations. Details as follows.

To enter the suspend/resume mode: issuing B0h for suspend; 30h for resume (SPI/QPI all acceptable)

Read security register bit2 (PSB) and bit3 (ESB) (please refer to table 9) to check suspend ready information.

Suspend to suspend ready timing: 20us.

Resume to another suspend timing: 1ms.

ESB bit (Erase Suspend Bit) indicates the status of Erase suspend operation. When issue a suspend command during erase operation ESB=1, when erase operation resumes, ESB will be reset to "0".

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

(31-1) Erase Suspend

Erase suspend allow the interruption of all erase operations.

After erase suspend, WEL bit will be clear, only read related, resume and reset command can be accepted unconditionally. (including: 03h, 0Bh, BBh, EBh, E7h, 9Fh, AFh, 90h, 05h, 2Bh, B1h, C1h, 5Ah, 3Ch, 30h, 66h, 99h, C0h, 35h, F5h, 00h, ABh)

For erase suspend to program operation, the programming command (38, 02) can be accepted under conditions as follows:

The bank is divided into 16 banks in this device, each bank's density is 4Mb. While conducting erase suspend in one bank, the programming operation that follows can only be conducted in one of the other banks and cannot be conducted in the bank executing the suspend operation. The boundaries of the banks are illustrated as below table.

MX25U3235E				
BANK (4M bit)	Address Range			
7	380000h-3FFFFFh			
6	300000h-37FFFFh			
5	280000h-2FFFFh			
4	200000h-27FFFh			
3	180000h-1FFFFFh			
2	100000h-17FFFFh			
1	080000h-0FFFFh			
0	000000h-07FFFh			

MX25U1635E					
BANK (4M bit) Address Range					
3	180000h-1FFFFh				
2	100000h-17FFFFh				
1	080000h-0FFFFh				
0	000000h-07FFFFh				

After issue erase suspend command, latency time 20us is needed before issue another command. For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note *Figure 39-1*, *Figure 39-2* and *Figure 39-3*.

ESB bit (Erase Suspend Bit) indicates the status of Erase suspend operation. When issue a suspend command during program operation ESB=1, when erase operation resumes, ESB will be reset to "0".

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

When ESB bit is issued, the Write Enable Latch (WEL) bit will be reset. See *Figure 39-1* for Suspend to Read latency.

(31-2) Program Suspend

Program suspend allows the interruption of all program operations.

After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted. (including: 03h, 08h, 88h, E8h, E7h, 9Fh, AFh, 90h, 05h, 28h, 81h, C1h, 5Ah, 3Ch, 30h, 66h, 99h, C0h, 35h, F5h, 00h, A8h)

After issue program suspend command, latency time 20us is needed before issue another command. For "Suspend to Read", "Resume to Suspend" timing specification please note *Figure 39-1*, *Figure 39-2* and *Figure 39-3*.

PSB bit (Program Suspend Bit) indicates the status of Program suspend operation. When issue a suspend command during program operation PSB=1, when program operation resumes, PSB will be reset to "0".

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

(32) Write-Resume

The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit) in Status register will be changed back to "0"

The operation of Write-Resume is as follows: CS# drives low \rightarrow send write resume command cycle (30H) \rightarrow drive CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be completed or not. The user may also wait the time lag of TSE, TBE, TPP for Sector-erase, Block-erase or Page-programming. WREN (command "06" is not required to issue before resume. Resume to another suspend operation requires latency time of 1ms.

Please note that, if "performance enhance mode" is executed during suspend operation, the device can not be resume. To restart the write command, disable the "performance enhance mode" is required. After the "performance enhance mode" is disable, the write-resume command is effective.

(33) No Operation (NOP)

The No Operation command only cancels a Reset Enable command. NOP has no impact on any other command.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

(34) Software Reset (Reset-Enable (RSTEN) and Reset (RST))

The Reset operation is used as a system (software) reset that puts the device in normal operating Ready mode. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST).

To reset the MX25U1635E/MX25U3235E the host drives CS# low, sends the Reset-Enable command (66H), and drives CS# high. Next, the host drives CS# low again, sends the Reset command (99H), and drives CS# high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

The Reset operation requires the Reset-Enable command followed by the Reset command. Any command other than the Reset command after the Reset-Enable command will disable the Reset-Enable.

A successful command execution will reset the device to SPI stand-by read mode, which are their respective default states, see *Figure 40*. A device reset during an active Program or Erase operation aborts the operation, which can cause the data of the targeted address range to be corrupted or lost. Depending on the prior operation, the reset timing may vary. Recovery from a Write operation requires more latency time than recovery from other operations.

(35) Reset Quad I/O (RSTQIO)

The Reset Quad I/O instruction, F5H, resets the device to 1-bit SPI protocol operation. To execute a Reset Quad I/O operation, the host drives CS# low, sends the Reset Quad I/O command cycle (F5h) then, drives CS# high.

Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care when during SPI mode.

Note:

For EQIO/RSTQIO/C0 PCSB high width has to follow "write spec" tSHSL as 30ns for next instruction.

P/N: PM1472 REV. 1.5, FEB. 10, 2012

(36) Read SFDP Mode (RDSFDP)

The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables can be interrogated by host system software to enable adjustments needed to accommodate divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on CFI.

The sequence of issuing RDSFDP instruction is CS# goes low→send RDSFDP instruction (5Ah)→send 3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation can use CS# to high at any time during data out.

SFDP is a standard of JEDEC, JESD216, v1.0.

Read Serial Flash Discoverable Parameter (RDSFDP) Sequence

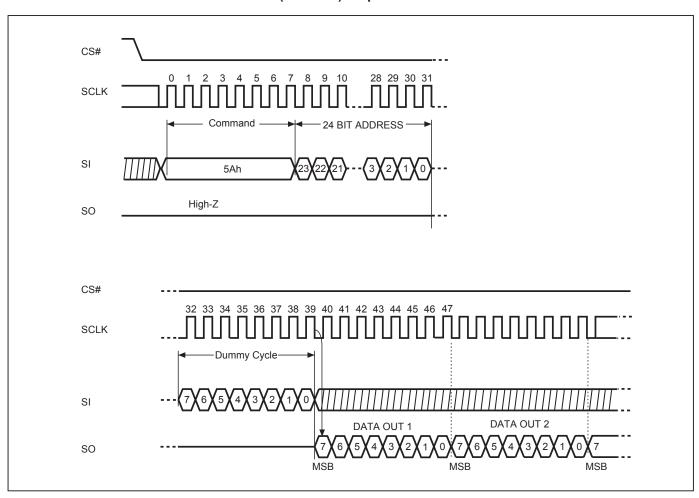


Table a-1. Signature and Parameter Identification Data Values for MX25U1635E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
		00h	07:00	53h	53h
CEDD Cignoture	Fixed: 50444652b	01h	15:08	46h	46h
SFDP Signature	Fixed: 50444653h	02h	23:16	44h	44h
		03h	31:24	50h	50h
SFDP Minor Revision Number	Start from 00h	04h	07:00	00h	00h
SFDP Major Revision Number	Start from 01h	05h	15:08	01h	01h
Number of Parameter Headers	Start from 01h	06h	23:16	01h	01h
Unused		07h	31:24	FFh	FFh
ID number (JEDEC)	00h: it indicates a JEDEC specified header.	08h	07:00	00h	00h
Parameter Table Minor Revision Number	Start from 00h	09h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	0Ah	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	0Bh	31:24	09h	09h
		0Ch	07:00	30h	30h
Parameter Table Pointer (PTP)	First address of JEDEC Flash Parameter table	0Dh	15:08	00h	00h
	r dramotor tasie	0Eh	23:16	00h	00h
Unused		0Fh	31:24	FFh	FFh
ID number (Macronix manufacturer ID)	it indicates Macronix manufacturer ID	10h	07:00	C2h	C2h
Parameter Table Minor Revision Number	Start from 00h	11h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	12h	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	13h	31:24	04h	04h
		14h	07:00	60h	60h
Parameter Table Pointer (PTP)	First address of Macronix Flash Parameter table	15h	15:08	00h	00h
		16h	23:16	00h	00h
Unused		17h	31:24	FFh	FFh

Table b-1. Parameter Table (0): JEDEC Flash Parameter Tables for MX25U1635E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Block/Sector Erase sizes	00: Reserved, 01: 4KB erase, 10: Reserved, 11: not suport 4KB erase		01:00	01b	
Write Granularity	0: 1Byte, 1: 64Byte or larger		02	1b	
Write Enable Instruction Requested for Writing to Volatile Status Registers	0: Nonvolatitle status bit 1: Volatitle status bit (BP status register bit)	30h	03	0b	E5h
Write Enable Opcode Select for Writing to Volatile Status Registers	0: use 50h opcode, 1: use 06h opcode Note: If target flash status register is nonvolatile, then bits 3 and 4 must be set to 00b.		04	0b	
Unused	Contains 111b and can never be changed		07:05	111b	
4KB Erase Opcode		31h	15:08	20h	20h
(1-1-2) Fast Read (Note2)	0=not support 1=support		16	0b	
Address Bytes Number used in addressing flash array	00: 3Byte only, 01: 3 or 4Byte, 10: 4Byte only, 11: Reserved		18:17	00b	B0h
Double Transfer Rate (DTR) Clocking	0=not support 1=support		19	0b	
(1-2-2) Fast Read	0=not support 1=support	32h	20	1b	
(1-4-4) Fast Read	0=not support 1=support		21	1b	
(1-1-4) Fast Read	0=not support 1=support		22	0b	
Unused			23	1b	
Unused		33h	31:24	FFh	FFh
Flash Memory Density		37h:34h	31:00	00FFFF	FFh
(1-4-4) Fast Read Number of Wait states (Note3)	0 0000b: Wait states (Dummy Clocks) not support	38h	04:00	0 0100b	44h
(1-4-4) Fast Read Number of Mode Bits (Note4)	000b: Mode Bits not support	3011	07:05	010b	4411
(1-4-4) Fast Read Opcode		39h	15:08	EBh	EBh
states	0 0000b: Wait states (Dummy Clocks) not support	3Ah	20:16	0 0000b	00h
(1-1-4) Fast Read Number of Mode Bits	000b: Mode Bits not support	0/311	23:21	000b	
(1-1-4) Fast Read Opcode		3Bh	31:24	FFh	FFh

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
(1-1-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	3Ch	04:00	0 0000b	00h
(1-1-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	3011	07:05	000b	0011
(1-1-2) Fast Read Opcode		3Dh	15:08	FFh	FFh
(1-2-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	3Eh	20:16	0 0100b	04h
(1-2-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	JEII	23:21	000b	0411
(1-2-2) Fast Read Opcode		3Fh	31:24	BBh	BBh
(2-2-2) Fast Read	0=not support 1=support		00	0b	
Unused		40h	03:01	111b	FFb
(4-4-4) Fast Read	0=not support 1=support	40h	04	1b	FEh
Unused			07:05	111b	
Unused		43h:41h	31:08	0xFFh	0xFFh
Unused		45h:44h	15:00	0xFFh	0xFFh
(2-2-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	46h	20:16	0 0000b	00h
(2-2-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	4011	23:21	000b	0011
(2-2-2) Fast Read Opcode		47h	31:24	FFh	FFh
Unused		49h:48h	15:00	0xFFh	0xFFh
(4-4-4) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	4Ah	20:16	0 0100b	44h
(4-4-4) Fast Read Number of Mode Bits	000b: Mode Bits not support	7/11	23:21	010b	4411
(4-4-4) Fast Read Opcode		4Bh	31:24	EBh	EBh
Sector Type 1 Size	Sector/block size = 2 ^N bytes (Note5) 0x00b: this sector type doesn't exist	4Ch	07:00	0Ch	0Ch
Sector Type 1 erase Opcode		4Dh	15:08	20h	20h
Sector Type 2 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	4Eh	23:16	0Fh	0Fh
Sector Type 2 erase Opcode		4Fh	31:24	52h	52h
Sector Type 3 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	50h	07:00	10h	10h
Sector Type 3 erase Opcode		51h	15:08	D8h	D8h
Sector Type 4 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	52h	23:16	00h	00h
Sector Type 4 erase Opcode		53h	31:24	FFh	FFh

Table c-1. Parameter Table (1): Macronix Flash Parameter Tables for MX25U1635E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Vcc Supply Maximum Voltage	2000h=2.000V 2700h=2.700V 3600h=3.600V	61h:60h	07:00 15:08	00h 20h	00h 20h
Vcc Supply Minimum Voltage	1650h=1.650V 2250h=2.250V 2350h=2.350V 2700h=2.700V	63h:62h	23:16 31:24	50h 16h	50h 16h
HW Reset# pin	0=not support 1=support		00	0b	
HW Hold# pin	0=not support 1=support		01	0b	
Deep Power Down Mode	0=not support 1=support		02	1b	
SW Reset	0=not support 1=support		03	1b	
SW Reset Opcode	Reset Enable (66h) should be issued before Reset command	65h:64h	11:04	1001 1001b (99h)	F99Ch
Program Suspend/Resume	0=not support 1=support		12	1b	
Erase Suspend/Resume	0=not support 1=support		13	1b	
Unused			14	1b	
Wrap-Around Read mode	0=not support 1=support		15	1b	
Wrap-Around Read mode Opcode		66h	23:16	C0h	C0h
Wrap-Around Read data length	08h:support 8B wrap-around read 16h:8B&16B 32h:8B&16B&32B 64h:8B&16B&32B&64B	67h	31:24	64h	64h
Individual block lock	0=not support 1=support		00	1b	
Individual block lock bit (Volatile/Nonvolatile)	0=Volatile 1=Nonvolatile		01	0b	
Individual block lock Opcode			09:02	0011 0110b (36h)	
Individual block lock Volatile protect bit default protect status	0=protect 1=unprotect	001 001	10	0b	C8D9h
Secured OTP	0=not support 1=support	6Bh:68h	11	1b	
Read Lock	0=not support 1=support		12	0b	
Permanent Lock	0=not support 1=support		13	0b	
Unused			15:14	11b	
Unused			31:16	0xFFh	0xFFh
Unused		6Fh:6Ch	31:00	0xFFh	0xFFh

Table a-2. Signature and Parameter Identification Data Values for MX25U3235E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
		00h	07:00	53h	53h
CEDD Circulatura	Fixed: 50444652b	01h	15:08	46h	46h
SFDP Signature	Fixed: 50444653h	02h	23:16	44h	44h
		03h	31:24	50h	50h
SFDP Minor Revision Number	Start from 00h	04h	07:00	00h	00h
SFDP Major Revision Number	Start from 01h	05h	15:08	01h	01h
Number of Parameter Headers	Start from 01h	06h	23:16	01h	01h
Unused		07h	31:24	FFh	FFh
ID number (JEDEC)	00h: it indicates a JEDEC specified header.	08h	07:00	00h	00h
Parameter Table Minor Revision Number	Start from 00h	09h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	0Ah	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	0Bh	31:24	09h	09h
		0Ch	07:00	30h	30h
Parameter Table Pointer (PTP)	First address of JEDEC Flash Parameter table	0Dh	15:08	00h	00h
	Tarameter table	0Eh	23:16	00h	00h
Unused		0Fh	31:24	FFh	FFh
ID number (Macronix manufacturer ID)	it indicates Macronix manufacturer ID	10h	07:00	C2h	C2h
Parameter Table Minor Revision Number	Start from 00h	11h	15:08	00h	00h
Parameter Table Major Revision Number	Start from 01h	12h	23:16	01h	01h
Parameter Table Length (in double word)	How many DWORDs in the Parameter table	13h	31:24	04h	04h
		14h	07:00	60h	60h
Parameter Table Pointer (PTP)	First address of Macronix Flash Parameter table	15h	15:08	00h	00h
		16h	23:16	00h	00h
Unused		17h	31:24	FFh	FFh

Table b-2. Parameter Table (0): JEDEC Flash Parameter Tables for MX25U3235E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Block/Sector Erase sizes	00: Reserved, 01: 4KB erase, 10: Reserved, 11: not suport 4KB erase		01:00	01b	
Write Granularity	0: 1Byte, 1: 64Byte or larger		02	1b	
Write Enable Instruction Requested for Writing to Volatile Status Registers	0: Nonvolatitle status bit 1: Volatitle status bit (BP status register bit)	30h	03	0b	E5h
Write Enable Opcode Select for Writing to Volatile Status Registers	be set to 00b.		04	0b	
Unused	Contains 111b and can never be changed		07:05	111b	
4KB Erase Opcode		31h	15:08	20h	20h
(1-1-2) Fast Read (Note2)	0=not support 1=support		16	0b	
Address Bytes Number used in addressing flash array	00: 3Byte only, 01: 3 or 4Byte, 10: 4Byte only, 11: Reserved		18:17	00b	B0h
Double Transfer Rate (DTR) Clocking	0=not support 1=support		19	0b	
(1-2-2) Fast Read	0=not support 1=support	32h	20	1b	
(1-4-4) Fast Read	0=not support 1=support		21	1b	
(1-1-4) Fast Read	0=not support 1=support		22	0b	
Unused			23	1b	
Unused		33h	31:24	FFh	FFh
Flash Memory Density		37h:34h	31:00	01FFFF	FFh
(1-4-4) Fast Read Number of Wait states (Note3)	0 0000b: Wait states (Dummy Clocks) not support	- 38h	04:00	0 0100b	44h
(1-4-4) Fast Read Number of Mode Bits (Note4)	000b: Mode Bits not support	JOH	07:05	010b	7711
(1-4-4) Fast Read Opcode		39h	15:08	EBh	EBh
(1-1-4) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	3Ah	20:16	0 0000b	00h
(1-1-4) Fast Read Number of Mode Bits	000b: Mode Bits not support	, ui	23:21	000b	0011
(1-1-4) Fast Read Opcode		3Bh	31:24	FFh	FFh

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
(1-1-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	3Ch	04:00	0 0000b	00h
(1-1-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	3011	07:05	000b	0011
(1-1-2) Fast Read Opcode		3Dh	15:08	FFh	FFh
(1-2-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	3Eh	20:16	0 0100b	04h
(1-2-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	JEII	23:21	000b	0411
(1-2-2) Fast Read Opcode		3Fh	31:24	BBh	BBh
(2-2-2) Fast Read	0=not support 1=support		00	0b	
Unused		40h	03:01	111b	EEb
(4-4-4) Fast Read	0=not support 1=support	4011	04	1b	FEh
Unused			07:05	111b	
Unused		43h:41h	31:08	0xFFh	0xFFh
Unused		45h:44h	15:00	0xFFh	0xFFh
(2-2-2) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	46h	20:16	0 0000b	00h
(2-2-2) Fast Read Number of Mode Bits	000b: Mode Bits not support	4011	23:21	000b	0011
(2-2-2) Fast Read Opcode		47h	31:24	FFh	FFh
Unused		49h:48h	15:00	0xFFh	0xFFh
(4-4-4) Fast Read Number of Wait states	0 0000b: Wait states (Dummy Clocks) not support	4Ah	20:16	0 0100b	44h
(4-4-4) Fast Read Number of Mode Bits	000b: Mode Bits not support	4411	23:21	010b	4411
(4-4-4) Fast Read Opcode		4Bh	31:24	EBh	EBh
Sector Type 1 Size	Sector/block size = 2 ^N bytes (Note5) 0x00b: this sector type doesn't exist	4Ch	07:00	0Ch	0Ch
Sector Type 1 erase Opcode		4Dh	15:08	20h	20h
Sector Type 2 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	4Eh	23:16	0Fh	0Fh
Sector Type 2 erase Opcode		4Fh	31:24	52h	52h
Sector Type 3 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	50h	07:00	10h	10h
Sector Type 3 erase Opcode		51h	15:08	D8h	D8h
Sector Type 4 Size	Sector/block size = 2^N bytes 0x00b: this sector type doesn't exist	52h	23:16	00h	00h
Sector Type 4 erase Opcode		53h	31:24	FFh	FFh

Table c-2. Parameter Table (1): Macronix Flash Parameter Tables for MX25U3235E

Description	Comment	Add (h) (Byte)	DW Add (Bit)	Data (h/b) (Note1)	Data (h)
Vcc Supply Maximum Voltage	2000h=2.000V 2700h=2.700V 3600h=3.600V	61h:60h	07:00 15:08	00h 20h	00h 20h
Vcc Supply Minimum Voltage	1650h=1.650V 2250h=2.250V 2350h=2.350V 2700h=2.700V	63h:62h	23:16 31:24	50h 16h	50h 16h
HW Reset# pin	0=not support 1=support		00	0b	
HW Hold# pin	0=not support 1=support		01	0b	
Deep Power Down Mode	0=not support 1=support		02	1b	
SW Reset	0=not support 1=support		03	1b	
SW Reset Opcode	Reset Enable (66h) should be issued before Reset command	65h:64h	11:04	1001 1001b (99h)	F99Ch
Program Suspend/Resume	0=not support 1=support		12	1b	
Erase Suspend/Resume	0=not support 1=support		13	1b	
Unused			14	1b	
Wrap-Around Read mode	0=not support 1=support		15	1b	
Wrap-Around Read mode Opcode		66h	23:16	C0h	C0h
Wrap-Around Read data length	08h:support 8B wrap-around read 16h:8B&16B 32h:8B&16B&32B 64h:8B&16B&32B&64B	67h	31:24	64h	64h
Individual block lock	0=not support 1=support		00	1b	
Individual block lock bit (Volatile/Nonvolatile)	0=Volatile 1=Nonvolatile		01	0b	
Individual block lock Opcode			09:02	0011 0110b (36h)	
Individual block lock Volatile protect bit default protect status	0=protect 1=unprotect	0.51	10	0b	C8D9h
Secured OTP	0=not support 1=support	6Bh:68h	11	1b	
Read Lock	0=not support 1=support		12	0b	
Permanent Lock	0=not support 1=support		13	0b	
Unused			15:14	11b	
Unused			31:16	0xFFh	0xFFh
Unused		6Fh:6Ch	31:00	0xFFh	0xFFh

- Note 1: h/b is hexadecimal or binary.
- Note 2: **(x-y-z)** means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x), address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2), and (4-4-4)
- Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
- Note 4: **Mode Bits** is optional control bits that follow the address bits. These bits are driven by the system controller if they are specified. (eg,read performance enhance toggling bits)
- Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
- Note 6: 0xFFh means all data is blank ("1b").

POWER-ON STATE

The device is at below states when power-up:

- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset

The device must not be selected during power-up and power-down stage unless the VCC achieves below correct level:

- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down

Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.

An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and the flash device has no response to any command.

For further protection on the device, after VCC reaching the VWI level, a tPUW time delay is required before the device is fully accessible for commands like write enable (WREN), page program (PP), quad page program (4PP), sector erase (SE), block erase 32KB (BE32K), block erase (BE), chip erase (CE), WRSCUR and write status register (WRSR). If the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The write, erase, and program command should be sent after the below time delay:

- tPUW after VCC reached VWI level
- tVSL after VCC reached VCC minimum level

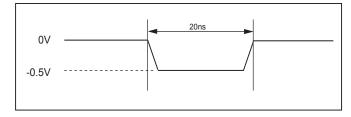
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of tPUW has not passed.

Please refer to the figure of "power-up timing".

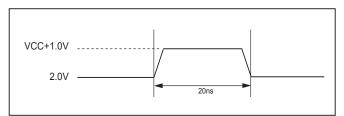
Note:

- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to any command. The data corruption might occur during the stage while a write, program, erase cycle is in progress.

ELECTRICAL SPECIFICATIONS


ABSOLUTE MAXIMUM RATINGS

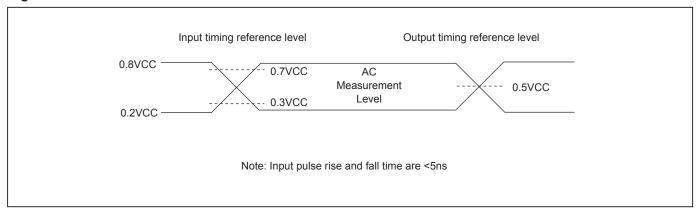
RATING		VALUE
Ambient Operating Temperature Industrial grade		-40°C to 85°C
Storage Temperature		-65°C to 150°C
Applied Input Voltage	-0.5V to VCC+0.5V	
Applied Output Voltage		-0.5V to VCC+0.5V
VCC to Ground Potential		-0.5V to VCC+0.5V


NOTICE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and functional operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.
- 2. Specifications contained within the following tables are subject to change.
- 3. During voltage transitions, all pins may overshoot to VCC+1.0V or -0.5V for period up to 20ns.
- 4. All input and output pins may overshoot to VCC+0.2V.

Figure 6. Maximum Negative Overshoot Waveform

Figure 7. Maximum Positive Overshoot Waveform



CAPACITANCE TA = 25°C, f = 1.0 MHz

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
CIN	Input Capacitance			10	pF	VIN = 0V
COUT	Output Capacitance			25	pF	VOUT = 0V

Figure 8. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL

Figure 9. OUTPUT LOADING

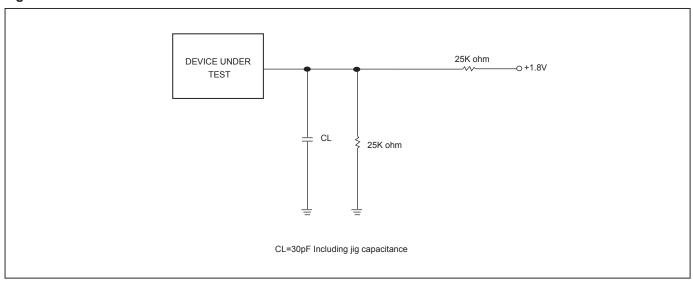


Table 9. DC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V)

Symbol	Parameter	Notes	Min.	Тур.	Max.	Units	Test Conditions	
ILI	Input Load Current	1			±2	uA	VCC = VCC Max, VIN = VCC or GND	
ILO	Output Leakage Current	1			±2	uA	VCC = VCC Max, VOUT = VCC or GND	
ISB1	VCC Standby Current	1		30	100	uA	VIN = VCC or GND, CS# = VCC	
ISB2	Deep Power-down Current			5	20	uA	VIN = VCC or GND, CS# = VCC	
ICC1	VCC Read	4			20	mA	f=104MHz, (4 x I/O read) SCLK=0.1VCC/0.9VCC, SO=Open	
		1			15	mA	f=84MHz, SCLK=0.1VCC/0.9VCC, SO=Open	
ICC2	VCC Program Current (PP)	1		20	25	mA	Program in Progress, CS# = VCC	
ICC3	VCC Write Status Register (WRSR) Current				20	mA	Program status register in progress, CS#=VCC	
ICC4	VCC Sector/Block (32K, 64K) Erase Current (SE/BE/BE32K)	1		20	25	mA	Erase in Progress, CS#=VCC	
ICC5	VCC Chip Erase Current (CE)	1		20	25	mA	Erase in Progress, CS#=VCC	
VIL	Input Low Voltage		-0.5		0.2VCC	V		
VIH	Input High Voltage		0.8VCC		VCC+0.4	V		
VOL	Output Low Voltage				0.2	V	IOL = 100uA	
VOH	Output High Voltage		VCC-0.2			V	IOH = -100uA	

Notes:

- 1. Typical values at VCC = 1.8V, T = 25°C. These currents are valid for all product versions (package and speeds).
- 2. Typical value is calculated by simulation.

Table 10. AC CHARACTERISTICS (Temperature = -40 $^{\circ}$ C to 85 $^{\circ}$ C, VCC = 1.65V \sim 2.0V)

Symbol	Alt.	Parameter			Тур.	Max.	Unit
fSCLK	fC	Clock Frequency for the following instructions: FAST_READ, RDSFDP, PP, 4PP, SE, BE, CE, DP, RES, RDP, WREN, WRDI, RDID, RDSR, WRSR		D.C.		104	MHz
fRSCLK	fR	Clock Frequency for READ instructions				33	MHz
fTSCLK	fT Clock Frequency for 2READ instructions		structions			84	MHz
TISCER	fQ	Clock Frequency for 4READ instructions (5)				84/104	MHz
tCH(1)(2)	tCLH	ICIOCK HIGH LIMA	erial (fSCLK)	4.5			ns
		4PI	P and Normal Read (fRSCLK)	4.5			ns
tCL(1)(2)	tCLL	Clock Low Time	erial (fSCLK)	4.5			ns
		4PI	P and Normal Read (fRSCLK)	4.5			ns
tCLCH(2)		Clock Rise Time (3) (peak to peak)					V/ns
tCHCL(2)		Clock Fall Time (3) (peak to peak)					V/ns
tSLCH(2)	tCSS	CS# Active Setup Time (relative	to SCLK)	4			ns
tCHSL(2)		CS# Not Active Hold Time (relati	ive to SCLK)	4			ns
tDVCH	tDSU	Data In Setup Time		2			ns
tCHDX(2)	tDH	Data In Hold Time					ns
tCHSH		CS# Active Hold Time (relative to	o SCLK)	5			ns
tSHCH		CS# Not Active Setup Time (rela	ative to SCLK)	7			ns
+CHCI (3)	tCSH	CS# Deselect Time	ead	12			ns
tSHSL(3)		Wri	rite/Erase/Program	30			ns
tSHQZ(2)	tDIS	Output Disable Time				8	ns
tCLQV	tV	Clock Low to Output Valid Loa	ading: 30pF			8	ns
ICLQV		Loading: 30pF/15pF Loa	ading: 15pF			6	ns
tCLQX	tHO	Output Hold Time		0			ns
tWHSL		Write Protect Setup Time		20			ns
tSHWL		Write Protect Hold Time		100			ns
tDP(2)		CS# High to Deep Power-down Mode				10	us
tRES1(2)		CS# High to Standby Mode without Electronic Signature Read				10	us
tRES2(2)		CS# High to Standby Mode with Electronic Signature Read				10	us
tRCR		Recovery Time from Read				20	us
tRCP		Recovery Time from Program				20	us
tRCE		Recovery Time from Erase				12	ms
tW		Write Status Register Cycle Time				40	ms
tBP		Byte-Program			8	30	us
tPP		Page Program Cycle Time			1.2	3	ms
tSE		Sector Erase Cycle Time			60	200	ms
tBE32		Block Erase (32KB) Cycle Time			250	1000	ms
tBE		Block Erase (64KB) Cycle Time			500	2000	ms
tCE		Chip Erase Cycle Time	Mb	ĺ	9	20	s
		32ľ	Mb		18	40	S

Notes:

- 1. tCH + tCL must be greater than or equal to 1/ Frequency.
- 2. Value guaranteed by characterization, not 100% tested in production.
- 3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
- 4. Test condition is shown as Figure 8,9.
- 5. When dummy cycle=4 (In both QPI & SPI mode), clock rate=84MHz; when dummy cycle=6 (In both QPI & SPI mode), clock rate=104MHz.

Timing Analysis

Figure 10. Serial Input Timing

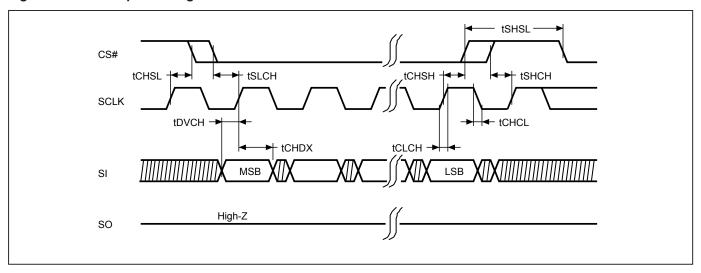


Figure 11. Output Timing

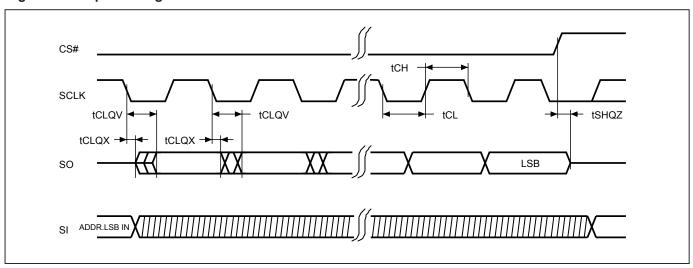


Figure 12. WP# Setup Timing and Hold Timing during WRSR when SRWD=1

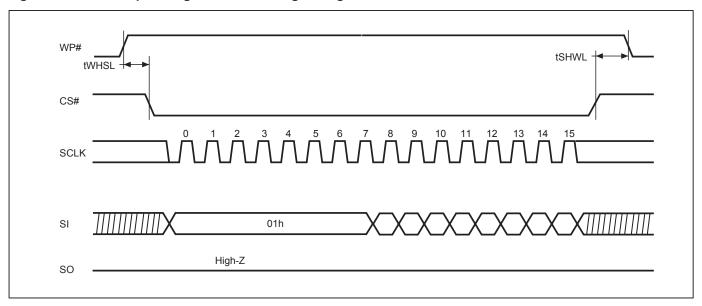


Figure 13-1. Write Enable (WREN) Sequence (Command 06) (SPI Mode)

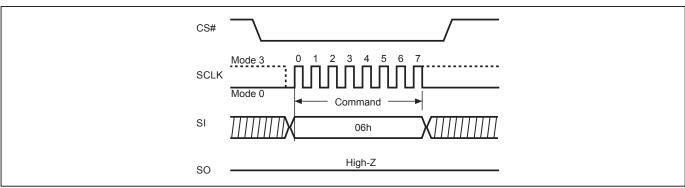


Figure 13-2. Write Enable (WREN) Sequence (Command 06) (QPI Mode)

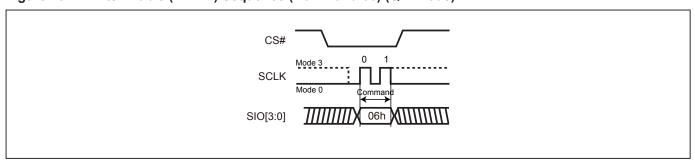


Figure 14-1. Write Disable (WRDI) Sequence (Command 04) (SPI Mode)

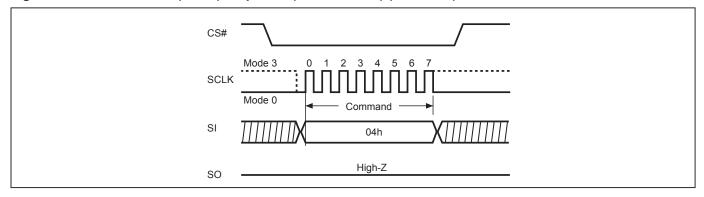


Figure 14-2. Write Disable (WRDI) Sequence (Command 04) (QPI Mode)

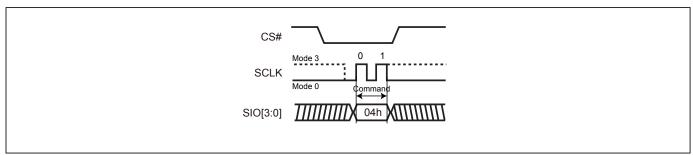


Figure 15. Read Identification (RDID) Sequence (Command 9F) (SPI mode only)

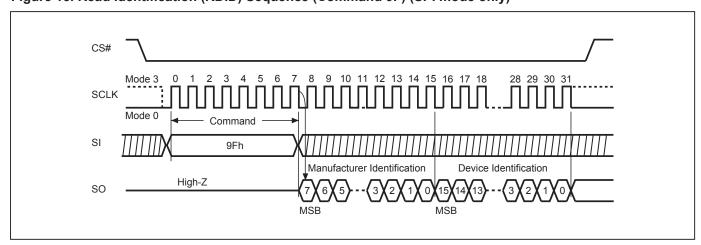


Figure 16-1. Read Status Register (RDSR) Sequence (Command 05) (SPI Mode)

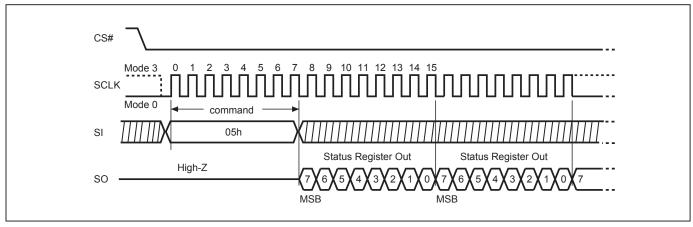


Figure 16-2. Read Status Register (RDSR) Sequence (Command 05) (QPI Mode)

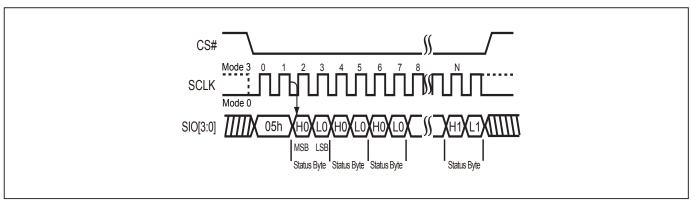
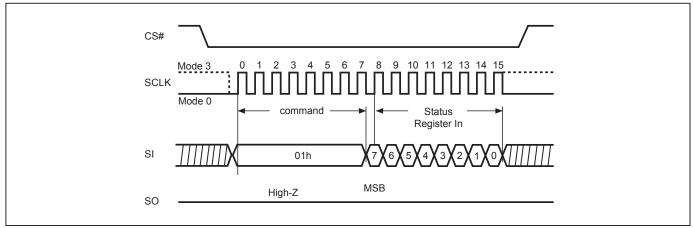



Figure 17-1. Write Status Register (WRSR) Sequence (Command 01) (SPI Mode)

Note: Also supported in QPI mode with command and subsequent input/output in Quad I/O mode.

Figure 17-2. Write Status Register (WRSR) Sequence (Command 01) (QPI Mode)

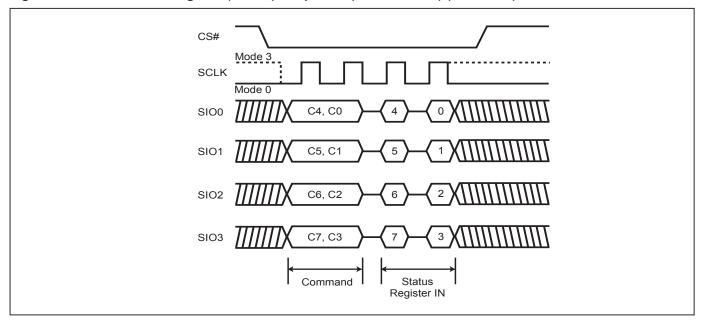
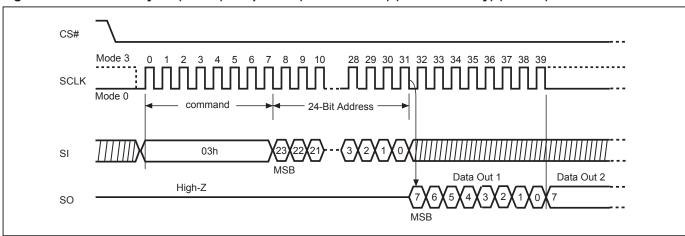



Figure 18. Read Data Bytes (READ) Sequence (Command 03) (SPI Mode only) (33MHz)

P/N: PM1472 REV. 1.5, FEB. 10, 2012

Figure 19-1. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (SPI Mode) (104MHz)

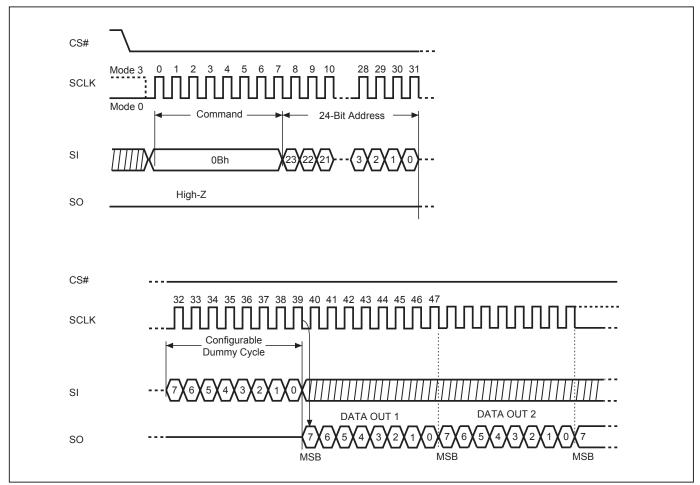


Figure 19-2. Read at Higher Speed (FAST_READ) Sequence (Command 0B) (QPI Mode) (84MHz)

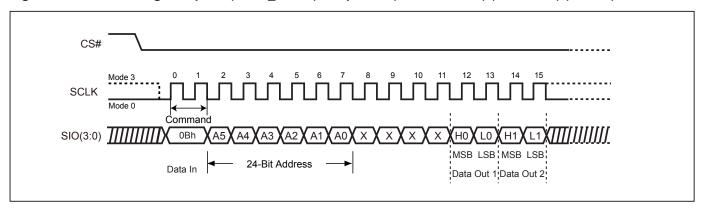


Figure 20. 2 x I/O Read Mode Sequence (Command BB) (SPI Mode only) (84MHz)

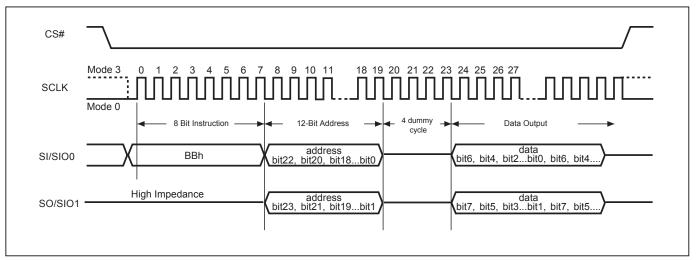
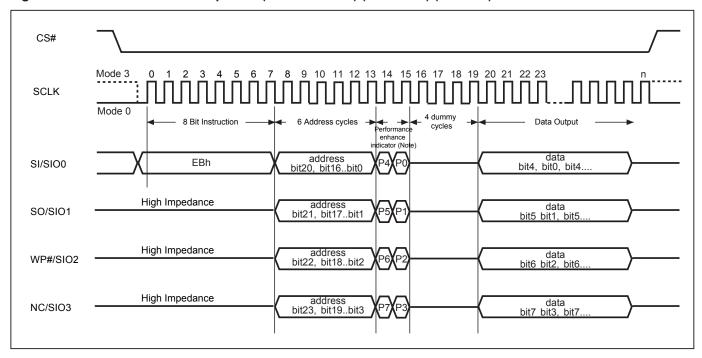
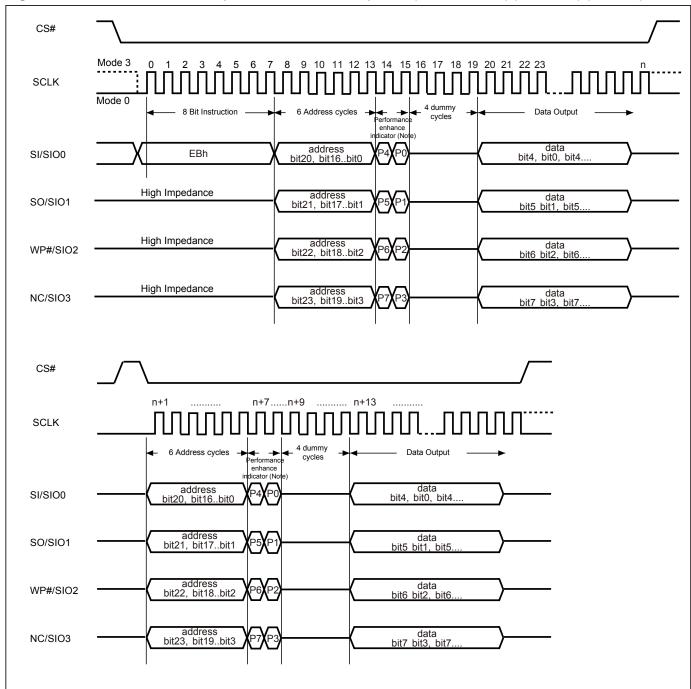



Figure 21. 4 x I/O Read Mode Sequence (Command EB) (SPI Mode) (104MHz)



Note:

- 1. Also supported in QPI mode with command and subsequent input/output in Quad I/O mode and runs at 104MHz.
- 2. Hi-impedance is inhibited for the two clock cycles.
- 3. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.

Figure 22-1. 4 x I/O Read enhance performance Mode Sequence (Command EB) (SPI Mode) (104MHz)

Note: Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using performance enhance recommend to keep 1 or 0 in performance enhance indicator.

Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF

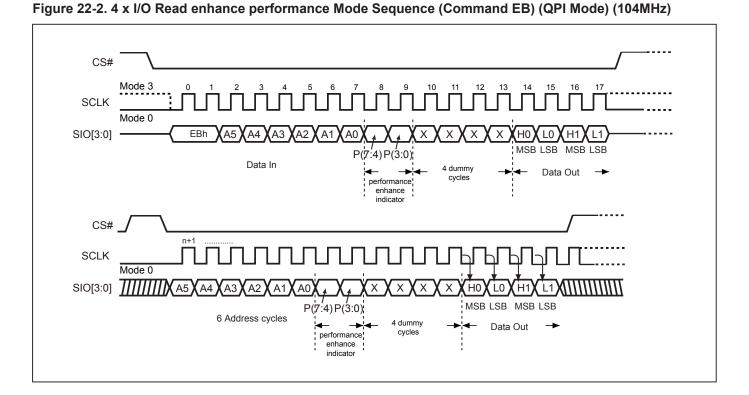


Figure 23-1. Page Program (PP) Sequence (Command 02) (SPI Mode)

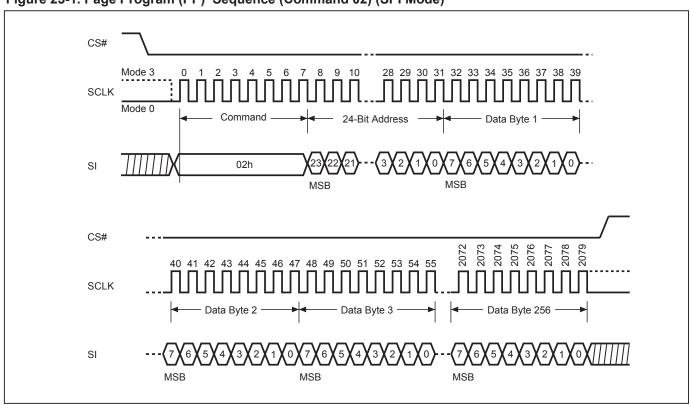


Figure 23-2. Page Program (PP) Sequence (Command 02) (QPI Mode)

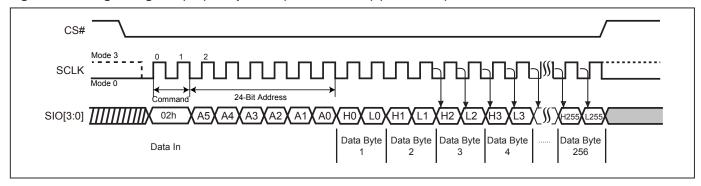


Figure 24. 4 x I/O Page Program (4PP) Sequence (Command 38) (SPI Mode only)

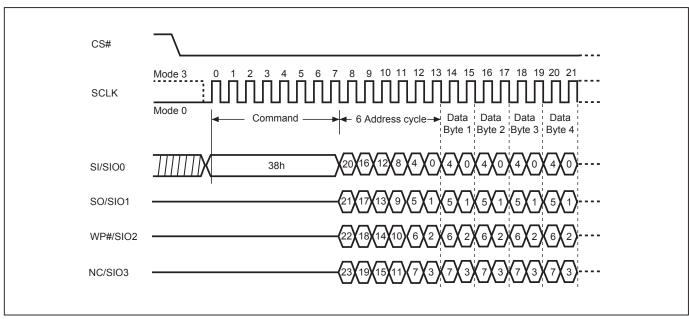


Figure 25-1. Sector Erase (SE) Sequence (Command 20) (SPI Mode)

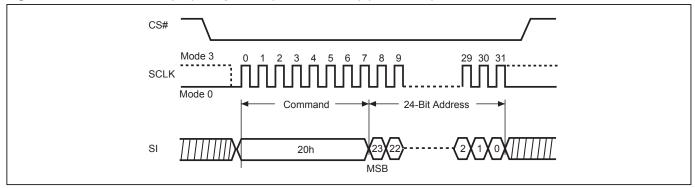


Figure 25-2. Sector Erase (SE) Sequence (Command 20) (QPI Mode)

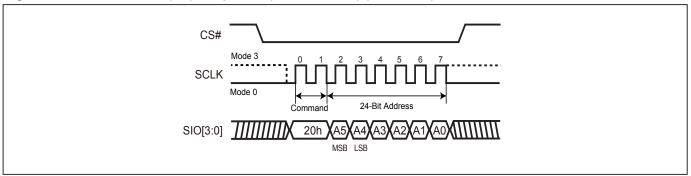


Figure 26-1. Block Erase 32KB (BE32K) Sequence (Command 52) (SPI Mode)

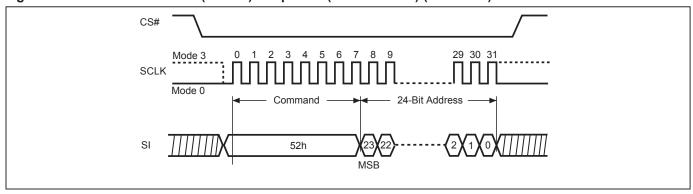


Figure 26-2. Block Erase 32KB (BE32K) Sequence (Command 52) (QPI Mode)

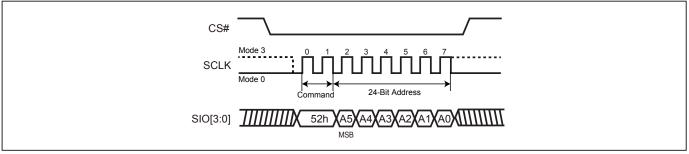


Figure 27-1. Block Erase (BE) Sequence (Command D8) (SPI Mode)

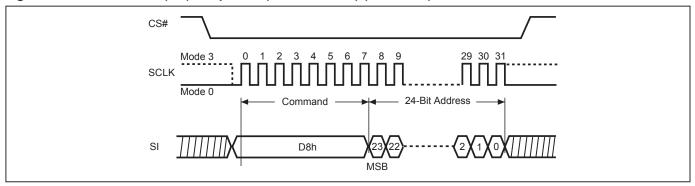


Figure 27-2. Block Erase (BE) Sequence (Command D8) (QPI Mode)

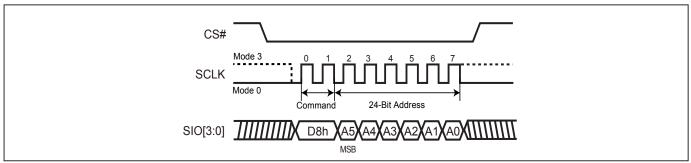


Figure 28-1. Chip Erase (CE) Sequence (Command 60 or C7) (SPI Mode)

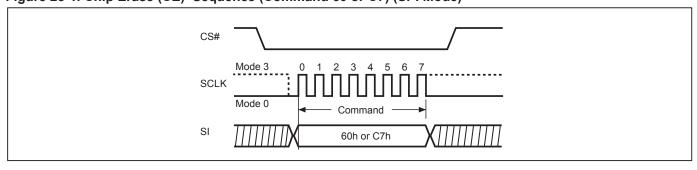


Figure 28-2. Chip Erase (CE) Sequence (Command 60 or C7) (QPI Mode)

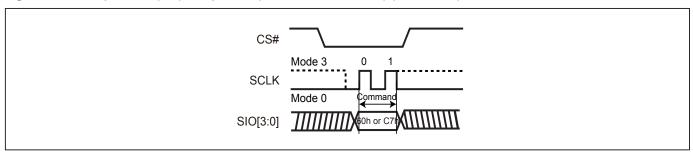


Figure 29-1. Deep Power-down (DP) Sequence (Command B9) (SPI Mode)

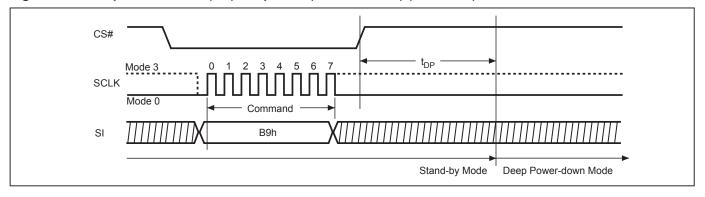


Figure 29-2. Deep Power-down (DP) Sequence (Command B9) (QPI Mode)

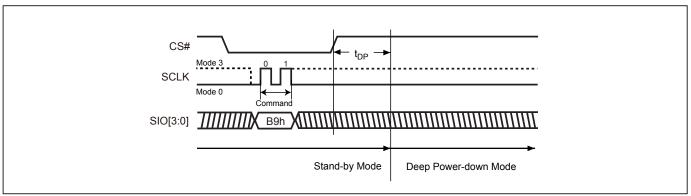


Figure 30. Read Electronic Signature (RES) Sequence (Command AB) (SPI Mode Only)

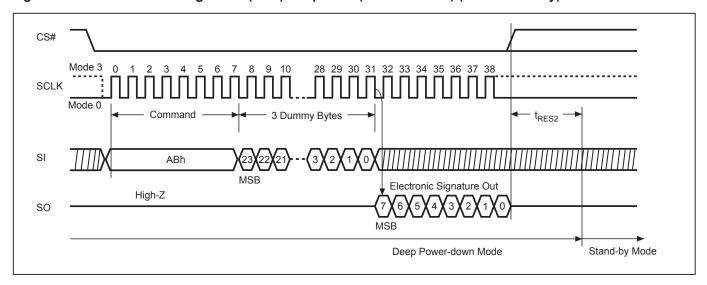


Figure 31-1. Release from Deep Power-down (RDP) Sequence (Command AB) (SPI Mode)

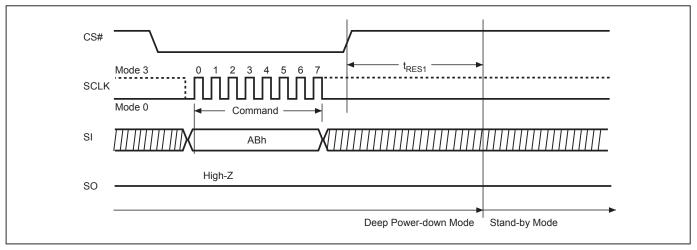


Figure 31-2. Release from Deep Power-down (RDP) Sequence (Command AB) (QPI Mode)

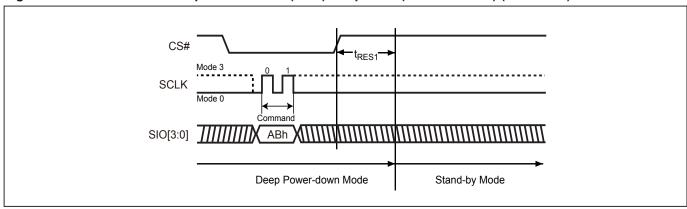
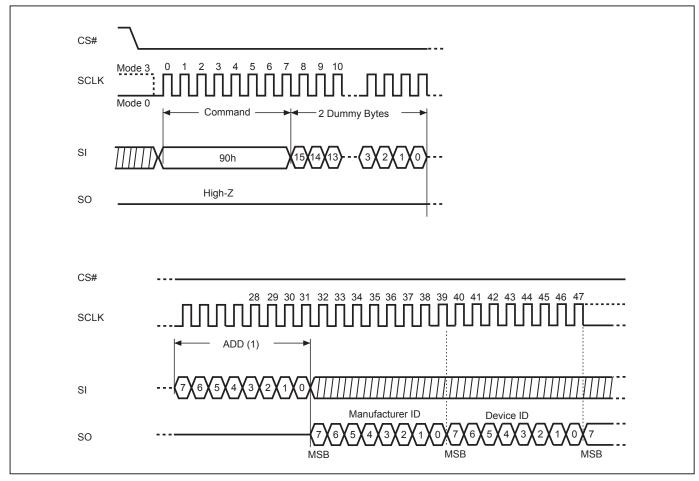



Figure 32. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90) (SPI Mode only)

Notes

- (1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
- (2) Instruction is either 90(hex).

Figure 33-1. Read Security Register (RDSCUR) Sequence (Command 2B) (SPI Mode)

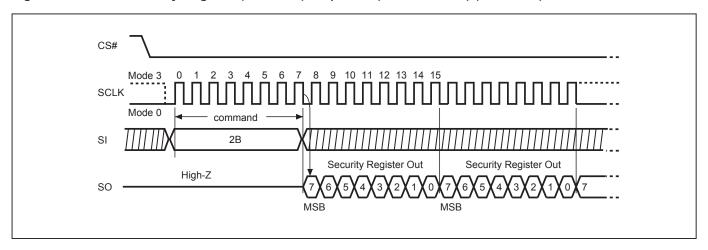


Figure 33-2. Read Security Register (RDSCUR) Sequence (Command 2B) (QPI Mode)

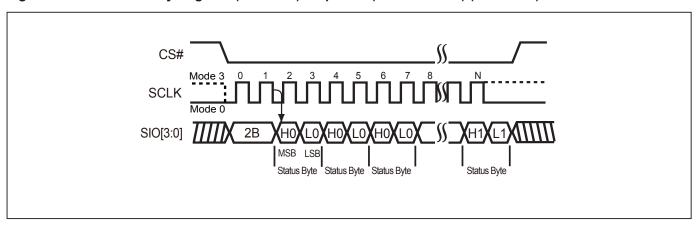


Figure 34-1. Write Security Register (WRSCUR) Sequence (Command 2F) (SPI Mode)



Figure 34-2. Write Security Register (WRSCUR) Sequence (Command 2F) (QPI Mode)

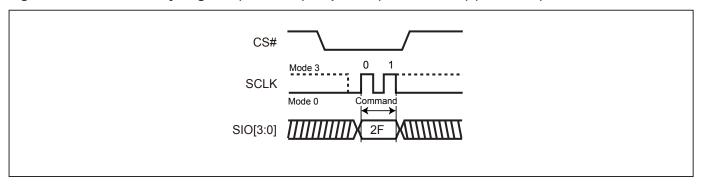


Figure 35. Word Read Quad I/O Instruction Sequence (Initial Word Read Quad I/O instruction or previous P4=1) (SPI Mode only) (84MHz)

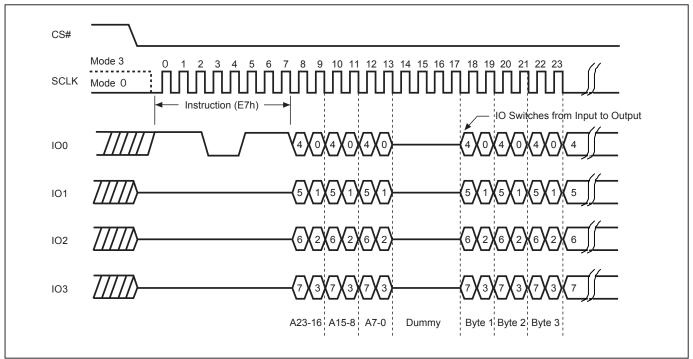


Figure 36. Performance Enhance Mode Reset for Fast Read Quad I/O (SPI and QPI Mode)

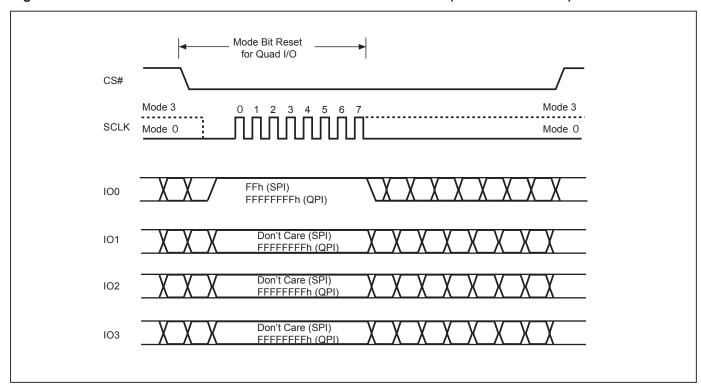


Figure 37-1. Reset Sequence (SPI mode)

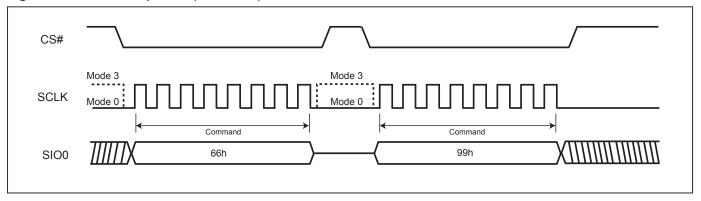


Figure 37-2. Reset Sequence (QPI mode)

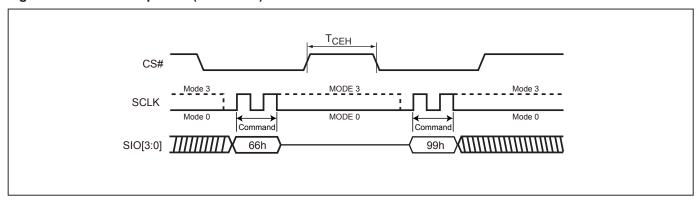
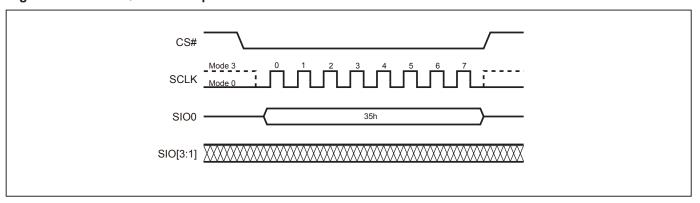
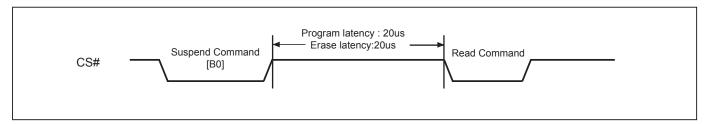




Figure 38. Enable Quad I/O Sequence

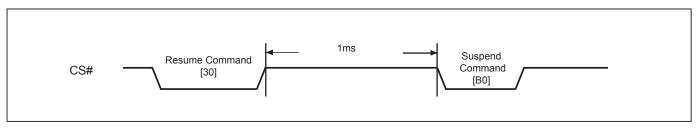

Figure 39-1. Suspend to Read Latency

Figure 39-2. Resume to Read Latency

Figure 39-3. Resume to Suspend Latency

Figure 40. Software Reset Recovery

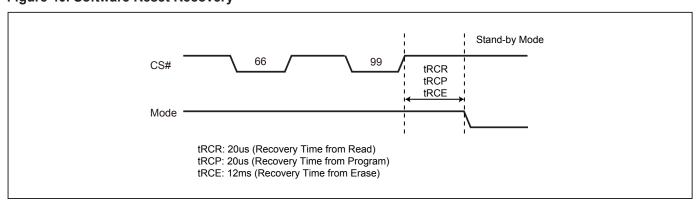



Figure 41. Power-up Timing

Note: VCC (max.) is 2.0V and VCC (min.) is 1.65V.

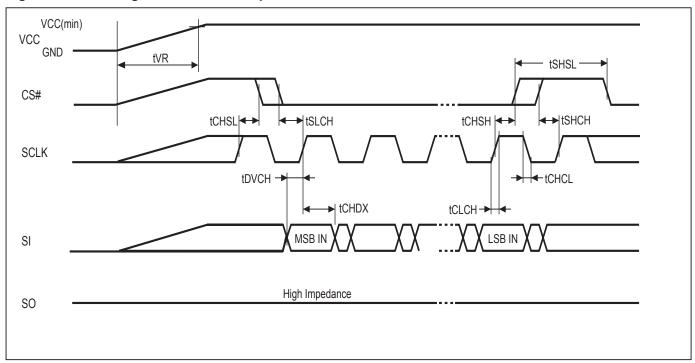
Table 11. Power-Up Timing and VWI Threshold

Symbol	Parameter	Min.	Max.	Unit
tVSL(1)	VCC(min) to CS# low (VCC Rise Time)	300		us
tPUW(1)	Time delay to Write instruction	1	10	ms
VWI(1)	Command Inhibit Voltage	1.0	1.4	V

Note: 1. These parameters are characterized only.

INITIAL DELIVERY STATE

The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0).


OPERATING CONDITIONS

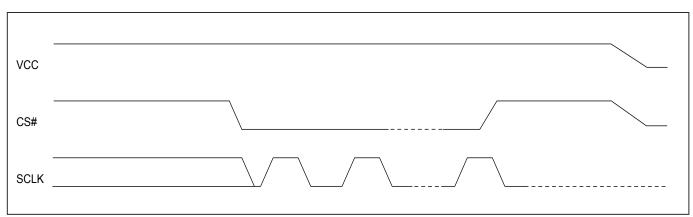
At Device Power-Up and Power-Down

AC timing illustrated in *Figure 42* and *Figure 43* are for the supply voltages and the control signals at device power-up and power-down. If the timing in the figures is ignored, the device will not operate correctly.

During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.

Figure 42. AC Timing at Device Power-Up

Symbol	Parameter	Notes	Min.	Max.	Unit
tVR	VCC Rise Time	1	20	500000	us/V


Notes:

- 1. Sampled, not 100% tested.
- 2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to "AC CHARACTERISTICS" table.

Figure 43. Power-Down Sequence

During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.

ERASE AND PROGRAMMING PERFORMANCE

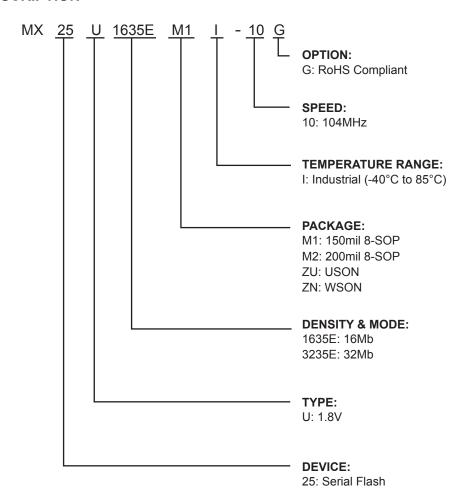
Parameter		Min.	Typ. (1)	Max. (2)	Unit
Write Status Register Cycle Time			40	ms	
Sector Erase Cycle Time (4KB)		60	200	ms	
Block Erase Cycle Time (32KB)			250	1000	ms
Block Erase Cycle Time (64KB)			500	2000	ms
Chin Erasa Cyala Tima	16M		9	20	S
Chip Erase Cycle Time	32M		18	40	S
Byte Program Time (via page program command)			8	30	us
Page Program Time		1.2	3	ms	
Erase/Program Cycle			100,000		cycles

Note:

- 1. Typical program and erase time assumes the following conditions: 25°C, 1.8V, and checker board pattern.
- 2. Under worst conditions of 85°C and 1.65V.
- 3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
- 4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=1.8V, and 100K cycle with 90% confidence level.

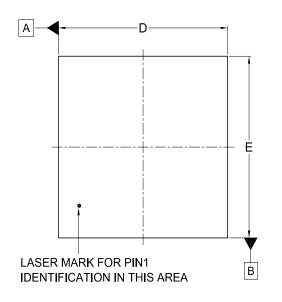
LATCH-UP CHARACTERISTICS

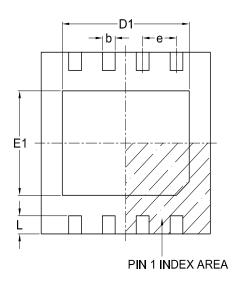
	Min.	Max.
Input Voltage with respect to GND on all power pins, SI, CS#	-1.0V	2 VCCmax
Input Voltage with respect to GND on SO	-1.0V	VCC + 1.0V
Current	-100mA	+100mA
Includes all pins except VCC. Test conditions: VCC = 1.8V, one pin at a time.		



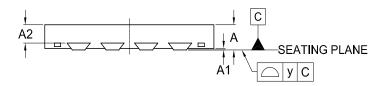
ORDERING INFORMATION

Part No.	Clock (MHz)	Operating Current Typ. (mA)	Standby Current Typ. (uA)	Temperature	Package	Remark
MX25U1635EM1I-10G	104	45	30	-40°C~85°C	8-SOP	RoHS
					(150mil)	Compliant
MX25U1635EM2I-10G	104	45	30	-40°C~85°C	8-SOP	RoHS
WIX230 1033EWIZI-10G	104	45	30	-40 C~65 C	(200mil)	Compliant
MX25U1635EZUI-10G	104	45	30	-40°C~85°C	8-USON	RoHS
WIX250 1035EZUI-10G	104	45	30	-40°C~65°C	(4x4mm)	Compliant
MX25U1635EZNI-10G	104	45	30	-40°C~85°C	8-WSON	RoHS
MX250 1635EZNI-10G	104	45	30	-40°C~65°C	(6x5mm)	Compliant
MANAGE 1222 ET MOL 400	404	45	20	4000 0500	8-SOP	RoHS
MX25U3235EM2I-10G	104	45	30	-40°C~85°C	(200mil)	Compliant
	404	45	20	4000 0500	8-WSON	RoHS
MX25U3235EZNI-10G	104	45	30	-40°C~85°C	(6x5mm)	Compliant


PART NAME DESCRIPTION



PACKAGE INFORMATION

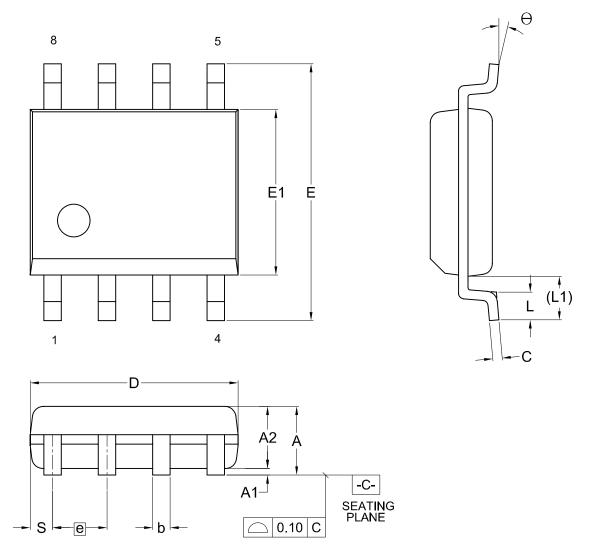

Doc. Title: Package Outline for USON 8L (4x4x0.6MM, LEAD PITCH 0.8MM)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Dimensions (inch dimensions are derived from the original mm dimensions)

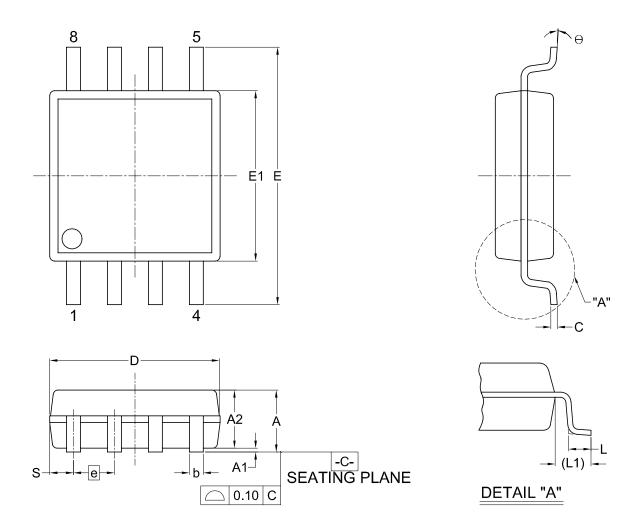

*1 : This package has exposed metal pad underneath the package, it can't contact to metal trace or pad on board.

*2 : The exposed pad size must not violate the min. metal separtion requirement, 0.2mm with terminals.

UNIT	MBOL	Α	A1	A2	b	D	D1	E	E1	L	e	у
	Min.	0.50		_	0.25	3.90	2.90	3.90	2.20	0.35	I	0.00
mm	Nom.	0.55	0.04	0.40	0.30	4.00	3.00	4.00	2.30	0.40	0.80	
	Max.	0.60	0.05	0.43	0.35	4.10	3.10	4.10	2.40	0.45		0.08
	Min.	0.020		_	0.010	0.154	0.114	0.154	0.087	0.014	-	0.00
Inch	Nom.	0.022	0.002	0.016	0.011	0.157	0.118	0.157	0.091	0.016	0.031	_
	Max.	0.024	0.002	0.017	0.014	0.161	0.122	0.161	0.094	0.018	1	0.003

D. M	Davisian	Reference								
Dwg. No.	Revision	JEDEC	EIAJ							
6110-3601	4	MO-252								

Doe. Title: Package Outline for SOP 8L (150MIL)

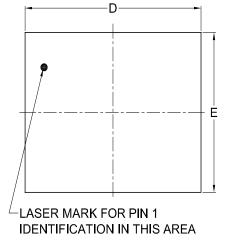


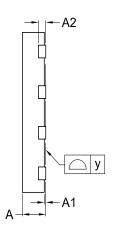
Dimensions (inch dimensions are derived from the original mm dimensions)

SY	MBOL	Α	A 1	A2	b	С	D	E	E1	е	L	L1	s	θ
	Min.	İ	0.10	1.35	0.36	0.15	4.77	5.80	3.80		0.46	0.85	0.41	0
mm	Nom.	1	0.15	1.45	0.41	0.20	4.90	5.99	3.90	1.27	0.66	1.05	0.54	5
	Max.	1.75	0.20	1.55	0.51	0.25	5.03	6.20	4.00		0.86	1.25	0.67	8
	Min.	1	0.004	0.053	0.014	0.006	0.188	0.228	0.150		0.018	0.033	0.016	0
Inch	Nom.		0.006	0.057	0.016	0.008	0.193	0.236	0.154	0.050	0.026	0.041	0.021	5
	Max.	0.069	0.008	0.061	0.020	0.010	0.198	0.244	0.158		0.034	0.049	0.026	8

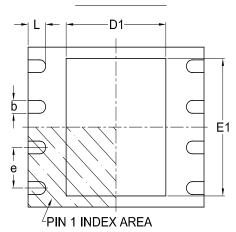
Dwg. No.	Revision	Reference							
Dwg. 140.		JEDEC	EIAJ						
6110-1401	7	MS-012							

Doc. Title: Package Outline for SOP 8L 200MIL (official name - 209MIL)


Dimensions (inch dimensions are derived from the original mm dimensions)


SY UNIT	MBOL	Α	A 1	A 2	b	С	D	E	E1	е	L	L1	s	θ
	Min.		0.05	1.70	0.36	0.19	5.13	7.70	5.18		0.50	1.21	0.62	0
mm	Nom.		0.15	1.80	0.41	0.20	5.23	7.90	5.28	1.27	0.65	1.31	0.74	5
	Max.	2.16	0.20	1.91	0.51	0.25	5.33	8.10	5.38		0.80	1.41	0.88	8
	Min.		0.002	0.067	0.014	0.007	0.202	0.303	0.204		0.020	0.048	0.024	0
Inch	Nom.		0.006	0.071	0.016	0.008	0.206	0.311	0.208	0.050	0.026	0.052	0.029	5
	Max.	0.085	0.008	0.075	0.020	0.010	0.210	0.319	0.212		0.031	0.056	0.035	8

Dave No	Revision	Reference							
Dwg. No.		JEDEC	EIAJ						
6110-1406	3								


Doc. Title: Package Outline for WSON 8L (6x5x0.8MM, LEAD PITCH 1.27MM)

TOP VIEW

SIDE VIEW

BOTTOM VIEW

Dimensions (inch dimensions are derived from the original mm dimensions)

*1 : This package has exposed metal pad underneath the package, it can't contact to metal trace or pad on board.

*2 : The exposed pad size must not violate the min. metal separtion requirement, 0.2mm with terminals.

UNIT	MBOL	Α	A1	A2	b	D	D1	E	E1	L	е	у
	MIn.	0.70			0.35	5.90	3.30	4.90	3.90	0.50	-	0.00
mm	Nom.	1		0.20	0.40	6.00	3.40	5.00	4.00	0.60	1.27	_
	Max.	0.80	0.05	-	0.48	6.10	3.50	5.10	4.10	0.75	_	0.08
	Min.	0.028	1	-	0.014	0.232	0.129	0.193	0.154	0.020	-	0.00
Inch	Nom.		-	0.008	0.016	0.236	0.134	0.197	0.157	0.024	0.05	
	Max.	0.032	0.002		0.019	0.240	0.138	0.201	0.161	0.030		0.003

Dwg No	Revision	Reference				
Dwg. No.	Kevision	JEDEC	EIAJ			
6110-3401	5	MO-220				

REVISION HISTORY

Revision No. 0.01	 Added MXSMIO[™] logo and 4 I/O 104MHz specifications Take out 8WSON and 200mil 8-SOP package outline Added software reset Corrected supporting instructions Modified dummy cycle numbers (from 2 to 4) Added QPI, Write suspend/resume commands Added QPI operations in the command descriptions AC/DC modifications; Write suspend features modify Updated SPI & QPI commands & descriptions Remove loading relevance to clock rate Modify 32Mb WSON package as USON package Add WIP, WEL polling sequence description 	Page P6 P9 P11 P16 P17 P19 ALL P6,38,39,45 ALL P6 P7 P22 P27 P45 P7 P9 P22~24 P19,40,41 P70,71 P6,48,69 P22,23 P56 P6	Date JUL/24/2009
	24. Added WRSCUR and WPSEL in WEL reset situation 25. Modified Recovery Time from Read	P11 P48,66	DEC/24/2009
0.02	 Modified "QE bit" description Modified four I/O and QPI mode description Modifed Release read Enable description Changed title from "Advanced Information" to "Preliminary" Added MX25U8035E and MX25U8035E function 	P25 P11,20 P19,28 P6 All	
0.03	Revised tCE Deleted tREHZ	P50,71 P50	JAN/27/2009
1.0	 Removed "Preliminary" Low Power Consumption: modified current description Table 10. AC CHARACTERISTICS: modified Min. tSLCH/tCHSH Modified Figure 40 Added Figure 41 Modified General Description Modified Fast Erase Time Modified Page Program Cycle Time from 0.9ms to 1.2ms Modified "Read DMC mode (RDDMC)" description Changed the naming "CFI mode" as "DMC mode" Added dummy description Modified figure 38 	P6 P6,49 P50 P70 P71 P8 P6 P6,50 P42 P18,22,42 P22 P68	APR/01/2010

Revision No. 1.1 1.2	 Description Removed DMC sequence description & content table Remove "Advanced Information" in the package information and part number section Added NC/SIO3 description Added RDSCUR & WRSCUR waveforms 	Page P18,22,42 P7,74 P7,10 P65,66	Date JUL/06/2010 SEP/16/2010
1.3 1.4	 Modified WRSCUR description Removed MX25U8035E Removed the QPI support in RES command Modified tCH/tCL(4PP and Normal Read) from 15ns to 4.5ns Modified Write Protection Selection (WPSEL) description Modified tSLCH, tCHSL & tCHDX Modified CIN/COUT (max.) from 6pF/8pF to 10pF/25pF Revised Ordering Information table 	P50 P38,39 P50 P47 P75	NOV/26/2010 SEP/29/2011
1.5	Added Read SFDP (RDSFDP) Mode	P7,17,20, P46~55,60	FEB/10/2012

P/N: PM1472 92 REV. 1.5, FEB. 10, 2012

Except for customized products which has been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as it's suppliers and/or distributors shall be released from any and all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2009~2012. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit, NBiit, Macronix NBit, eLiteFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names and brands of other companies are for identification purposes only and may be claimed as the property of the respective companies.

For the contact and order information, please visit Macronix's Web site at: http://www.macronix.com